Abstract
In this paper, we propose a semi-automatic proof approach for programs written in Modeling, Simulation and Verification Language (MSVL) based on the interactive theorem prover Coq. To this end, first, the syntax and semantics of MSVL are briefly introduced, and the specification and proof tactics of Coq are described. Further, an axiomatic system of MSVL programs is specified in Coq. Based on these, MSVL programs and related properties can be recognized in Coq so that theorems to be proved can be formalised and the verification can be conducted when proof tactics are provided in the Coq prover. Finally, an example is given to illustrate how our proposed approach works.
The research is supported by the National Natural Science Foundation of China under Grant Nos. 61133001, 61572386, 61420106004 and 91418201.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bledsoe, W., Loveland, D.: Interactive Theorem Proving and Program Development. Contemporary Mathematics Series, vol. 29. American Mathematical Society, Providence (1984)
Clarke, E.M., Grumberg, O., Peled, D.: Model Checking, pp. 54–56. MIT Press, Cambridge (2000)
Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88194-0_12
Comert, F., Ovatman, T.: Attacking state space explosion problem in model checking embedded TV software. IEEE Trans. Consum. Electron. 61(4), 572–579 (2015)
Duan, Z., Yang, X., Koutny, M.: Frammed temporal logic programming. Sci. Comput. Program. 70(1), 31–61 (2008)
Barras, B., Boutin, S., Cornes, C., et al.: The Coq proof assistant: reference manual. Rapport technique - INRIA (2000), https://coq.inria.fr
Wang, X., Duan, Z., Zhao, L.: Formalizing and implementing types in MSVL. In: Liu, S., Duan, Z. (eds.) SOFL+MSVL 2013. LNCS, vol. 8332, pp. 62–75. Springer, Cham (2014). doi:10.1007/978-3-319-04915-1_5
Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal Logic Programming. Ph.D Thesis (Technical Report No. 556). University of Newcastle upon Tyne (1996)
Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). doi:10.1007/3-540-55602-8_217
Brock, B., Kaufmann, M., Moore, J.S.: ACL2 theorems about commercial microprocessors. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 275–293. Springer, Heidelberg (1996). doi:10.1007/BFb0031816
Gordon, M., Melham, T.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)
Kalvala, S.: Using isabelle to prove simple theorems. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 514–517. Springer, Heidelberg (1994). doi:10.1007/3-540-57826-9_160
Howe, D.J.: Importing mathematics from HOL into Nuprl. In: Goos, G., Hartmanis, J., Leeuwen, J., Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 267–281. Springer, Heidelberg (1996). doi:10.1007/BFb0105410
Ma, Q., Duan, Z., Zhang, N., Wang, X.: Verification of distributed systems with the axiomatic system of MSVL. Formal Aspects Comput. 27(1), 103–131 (2015)
Appel, A.W., Blazy, S.: Separation logic for small-step cminor. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74591-4_3
Chlipala, A.: Mostly-automated verification of low-level programs in computational separation logic. In: Proceedings of the ACM SIGPLAN 2011 Conference on Programming Language Design and Implementation, vol. 47(6), pp. 234–245 (2011)
Yang, X., Duan, Z., Ma, Q.: Axiomatic semantics of projection temporal logic programs. Math. Struct. Comput. Sci. 20(5), 865–914 (2010)
Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991). doi:10.1007/BFb0023729
Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Comput. 110(2), 305–326 (1994)
Zhang, N., Duan, Z., Tian, C.: An axiomatization for cylinder computation model. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 71–83. Springer, Cham (2014). doi:10.1007/978-3-319-08783-2_7
Zhang, N., Duan, Z.: A semantic model for many-core parallel computing. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 464–479. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22616-8_36
Esparza, J.: Model checking using net unfoldings. Sci. Comput. Program. 23, 151–195 (1994)
Ma, Y., Duan, Z., Wang, X.: An interpreter for framed tempura and its application. In: Proceedings of First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering, pp. 251–260. IEEE Press (2007)
Borgstrom, J., Gordon, A., Pucella, R.: Roles, stacks, histories: a triple for hoare. In: Reflections on the Work of C.A.R. Hoare, pp. 71–99 (2010)
Duan, Z., Zhang, N., Koutny, M.: A complete proof system for propositional projection temporal logic. Theoret. Comput. Sci. 497(5), 84–107 (2013)
Tian, C., Duan, Z., Zhang, L.: A decision procedure for propositional projection temporal logic with infinite models. Acta Informatica 45, 43–78 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Appendix: State Axioms and inference rules
Axioms

Inference Rules

B Appendix: Axioms and inference rules Over Intervals
Axioms

Inference Rules

C Appendix: Deducting Frog Routing Problem in Coq

Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Qian, L., Duan, Z., Zhang, N., Tian, C. (2017). A Proof System for MSVL Programs in Coq. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds) Structured Object-Oriented Formal Language and Method. SOFL+MSVL 2016. Lecture Notes in Computer Science(), vol 10189. Springer, Cham. https://doi.org/10.1007/978-3-319-57708-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-57708-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57707-4
Online ISBN: 978-3-319-57708-1
eBook Packages: Computer ScienceComputer Science (R0)