Skip to main content

On the Employ of Time Series in the Numerical Treatment of Differential Equations Modeling Oscillatory Phenomena

  • Conference paper
  • First Online:
Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry (WIVACE 2016)

Abstract

The employ of an adapted numerical scheme within the integration of differential equations shows benefits in terms of accuracy and stability. In particular, we focus on differential equations modeling chemical phenomena with an oscillatory dynamics. In this work, the adaptation can be performed thanks to the information arising from existing theoretical studies and especially the observation of time series. Such information is properly merged into the exponential fitting technique, which is specially suitable to follow the a-priori known qualitative behavior of the solution. Some numerical experiments will be provided to exhibit the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Ambrosio, R., Paternoster, B.: Numerical solution of reaction-diffusion systems of \(\lambda \) - \(\omega \) type by trigonometrically fitted methods. J. Comput. Appl. Math. 294, 436–445 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step hybrid methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 235(16), 4888–4897 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ixaru, L.G., Berghe, G.V.: Exponential Fitting. Springer, Netherlands (2004)

    Book  MATH  Google Scholar 

  4. Paternoster, B.: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183, 2499–2512 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Ambrosio, R., Esposito, E., Paternoster, B.: Parameter estimation in exponentially fitted hybrid methods for second order differential problems. J. Math. Chem. 50(1), 155–168 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step Runge-Kutta methods: construction and parameter selection. Appl. Math. Comp. 218(14), 7468–7480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, 1st edn. Oxford University Press, Oxford (1998)

    Google Scholar 

  8. Murray, J.D.: Mathematical Biology. Springer, New York (2004)

    Book  MATH  Google Scholar 

  9. Tyson, J.J.: What everyone should know about the Belousov-Zhabotinsky reaction. In: Levin, S.A. (ed.) Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol. 100, pp. 569–587. Springer, Heidelberg (1994). doi:10.1007/978-3-642-50124-1_33

    Chapter  Google Scholar 

  10. Belousov, B.P.: An oscillating reaction and its mechanism. In: Sborn. referat. radiat. med. (Collection of abstracts on radiation medicine), p. 145. Medgiz (1959)

    Google Scholar 

  11. Field, R.J., Burger, M.: Oscillations and Traveling Waves in Chemical Systems. Wiley-Interscience, New York (1985)

    Google Scholar 

  12. Zhabotinsky, A.M.: Periodic processes of the oxidation of malonic acid in solution (study of the kinetics of Belousov reaction). Biofizika 9, 306–311 (1964)

    Google Scholar 

  13. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225(5232), 535–537 (1970)

    Article  Google Scholar 

  14. Zhabotinsky, A.M., Rossi, F.: A brief tale on how chemical oscillations became popular: an interview with Anatol Zhabotinsky. Int. J. Des. Nat. Ecodyn. 1(4), 323–326 (2006)

    Article  Google Scholar 

  15. Marchettini, N., Budroni, M.A., Rossi, F., Masia, M., Liveri, M.L.T., Rustici, M.: Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotinsky oscillator in closed unstirred reactors. Phys. Chem. Chem. Phys. 12(36), 11062–11069 (2010)

    Article  Google Scholar 

  16. Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J.: Segmented waves in a reaction-diffusion-convection system. Chaos: Interdisc. J. Nonlinear Sci. 22(3), 037109 (2012)

    Article  MathSciNet  Google Scholar 

  17. Taylor, A.F.: Mechanism and phenomenology of an oscillating chemical reaction. Prog. React. Kinet. Mech. 27(4), 247–325 (2002)

    Article  Google Scholar 

  18. Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction-diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)

    Article  Google Scholar 

  19. Rossi, F., Ristori, S., Rustici, M., Marchettini, N., Tiezzi, E.: Dynamics of pattern formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)

    Article  MathSciNet  Google Scholar 

  20. Albrecht, P.: A new theoretical approach to RK methods. SIAM J. Numer. Anal. 24(2), 391–406 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Paternoster, B.: Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28(2), 401–412 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rossi, F., Budroni, M.A., Marchettini, N., Cutietta, L., Rustici, M., Liveri, M.L.T.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480(4), 322–326 (2009)

    Article  Google Scholar 

  23. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer Series in Computational Mathematics, vol. 31. Springer, Heidelberg (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Moccaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

D’Ambrosio, R., Moccaldi, M., Paternoster, B., Rossi, F. (2017). On the Employ of Time Series in the Numerical Treatment of Differential Equations Modeling Oscillatory Phenomena. In: Rossi, F., Piotto, S., Concilio, S. (eds) Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry. WIVACE 2016. Communications in Computer and Information Science, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-319-57711-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57711-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57710-4

  • Online ISBN: 978-3-319-57711-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics