Abstract
The employ of an adapted numerical scheme within the integration of differential equations shows benefits in terms of accuracy and stability. In particular, we focus on differential equations modeling chemical phenomena with an oscillatory dynamics. In this work, the adaptation can be performed thanks to the information arising from existing theoretical studies and especially the observation of time series. Such information is properly merged into the exponential fitting technique, which is specially suitable to follow the a-priori known qualitative behavior of the solution. Some numerical experiments will be provided to exhibit the effectiveness of this approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
D’Ambrosio, R., Paternoster, B.: Numerical solution of reaction-diffusion systems of \(\lambda \) - \(\omega \) type by trigonometrically fitted methods. J. Comput. Appl. Math. 294, 436–445 (2016)
D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step hybrid methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 235(16), 4888–4897 (2011)
Ixaru, L.G., Berghe, G.V.: Exponential Fitting. Springer, Netherlands (2004)
Paternoster, B.: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183, 2499–2512 (2012)
D’Ambrosio, R., Esposito, E., Paternoster, B.: Parameter estimation in exponentially fitted hybrid methods for second order differential problems. J. Math. Chem. 50(1), 155–168 (2012)
D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step Runge-Kutta methods: construction and parameter selection. Appl. Math. Comp. 218(14), 7468–7480 (2012)
Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, 1st edn. Oxford University Press, Oxford (1998)
Murray, J.D.: Mathematical Biology. Springer, New York (2004)
Tyson, J.J.: What everyone should know about the Belousov-Zhabotinsky reaction. In: Levin, S.A. (ed.) Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol. 100, pp. 569–587. Springer, Heidelberg (1994). doi:10.1007/978-3-642-50124-1_33
Belousov, B.P.: An oscillating reaction and its mechanism. In: Sborn. referat. radiat. med. (Collection of abstracts on radiation medicine), p. 145. Medgiz (1959)
Field, R.J., Burger, M.: Oscillations and Traveling Waves in Chemical Systems. Wiley-Interscience, New York (1985)
Zhabotinsky, A.M.: Periodic processes of the oxidation of malonic acid in solution (study of the kinetics of Belousov reaction). Biofizika 9, 306–311 (1964)
Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225(5232), 535–537 (1970)
Zhabotinsky, A.M., Rossi, F.: A brief tale on how chemical oscillations became popular: an interview with Anatol Zhabotinsky. Int. J. Des. Nat. Ecodyn. 1(4), 323–326 (2006)
Marchettini, N., Budroni, M.A., Rossi, F., Masia, M., Liveri, M.L.T., Rustici, M.: Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotinsky oscillator in closed unstirred reactors. Phys. Chem. Chem. Phys. 12(36), 11062–11069 (2010)
Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J.: Segmented waves in a reaction-diffusion-convection system. Chaos: Interdisc. J. Nonlinear Sci. 22(3), 037109 (2012)
Taylor, A.F.: Mechanism and phenomenology of an oscillating chemical reaction. Prog. React. Kinet. Mech. 27(4), 247–325 (2002)
Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction-diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)
Rossi, F., Ristori, S., Rustici, M., Marchettini, N., Tiezzi, E.: Dynamics of pattern formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)
Albrecht, P.: A new theoretical approach to RK methods. SIAM J. Numer. Anal. 24(2), 391–406 (1987)
Paternoster, B.: Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28(2), 401–412 (1998)
Rossi, F., Budroni, M.A., Marchettini, N., Cutietta, L., Rustici, M., Liveri, M.L.T.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480(4), 322–326 (2009)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer Series in Computational Mathematics, vol. 31. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
D’Ambrosio, R., Moccaldi, M., Paternoster, B., Rossi, F. (2017). On the Employ of Time Series in the Numerical Treatment of Differential Equations Modeling Oscillatory Phenomena. In: Rossi, F., Piotto, S., Concilio, S. (eds) Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry. WIVACE 2016. Communications in Computer and Information Science, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-319-57711-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-57711-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57710-4
Online ISBN: 978-3-319-57711-1
eBook Packages: Computer ScienceComputer Science (R0)