Abstract
Structural approaches have greatly simplified the analysis of intractable properties in Petri nets, notably liveness. In this paper, we further develop these structural methods in particular weighted subclasses of Petri nets to analyze liveness and deadlockability, the latter property being a strong form of non-liveness.
For homogeneous join-free nets, from the analysis of specific substructures, we provide the first polynomial-time characterizations of structural liveness and structural deadlockability, expressing respectively the existence of a live marking and the deadlockability of every marking.
For the join-free class, assuming structural boundedness and leaving out the homogeneity constraint, we show that liveness is not monotonic, meaning not always preserved upon any increase of a live marking.
Finally, we use this new material to correct a flaw in the proof of a previous characterization of monotonic liveness and boundedness for homogeneous asymmetric-choice nets, published in 2004 and left unnoticed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In this paper, we study siphons that may contain traps, remarkably in JF nets. Hence, we cannot use the results of [3]. Also, our nets will often be structurally repetitive (weakly sur-consistent), which is another well-known necessary condition of structural liveness (Proposition 10 in [18]) that is not sufficient in the HJF class.
- 3.
Each of them has traps and is weakly sur-consistent (i.e. structurally repetitive).
References
Barkaoui, K., Couvreur, J.-M., Klai, K.: On the equivalence between liveness and deadlock-freeness in Petri nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 90–107. Springer, Heidelberg (2005). doi:10.1007/11494744_7
Barkaoui, K., Minoux, M.: A polynomial-time graph algorithm to decide liveness of some basic classes of bounded Petri nets. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 62–75. Springer, Heidelberg (1992). doi:10.1007/3-540-55676-1_4
Barkaoui, K., Pradat-Peyre, J.-F.: On liveness and controlled siphons in Petri nets. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 57–72. Springer, Heidelberg (1996). doi:10.1007/3-540-61363-3_4
Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 326–337. Springer, Heidelberg (1993). doi:10.1007/3-540-57529-4_66
Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press, New York (1995)
Esparza, J.: Decidability and complexity of Petri net problems – an introduction. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998). doi:10.1007/3-540-65306-6_20
Esparza, J., Nielsen, M.: Decidability issues for Petri nets–a survey. BRICS Rep. Ser. (8) (1994)
Heiner, M., Mahulea, C., Silva, M.: On the importance of the deadlock trap property for monotonic liveness. In: International Workshop on Biological Processes and Petri nets (BioPPN), A satellite event of Petri Nets 2010 (2010)
Hujsa, T., Delosme, J.M., Munier-Kordon, A.: Polynomial sufficient conditions of well-behavedness and home markings in subclasses of weighted Petri nets. Trans. Embed. Comput. Syst. 13, 1–25 (2014)
Hujsa, T., Delosme, J.M., Munier-Kordon, A.: On liveness and reversibility of equal-conflict Petri nets. Fundam. Inf. 146(1), 83–119 (2016)
Jiao, L., Cheung, T.Y., Lu, W.: On liveness and boundedness of asymmetric choice nets. Theor. Comput. Sci. 311(1–3), 165–197 (2004)
Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)
Lipton, R.: The reachability problem requires exponential space. Technical report 62, Department of Computer Science, Yale University (1976)
Mayr, E.W., Weihmann, J.: Results on equivalence, boundedness, liveness, and covering problems of BPP-Petri nets. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 70–89. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38697-8_5
Mayr, E.W., Weihmann, J.: Complexity results for problems of communication-free Petri nets and related formalisms. Fundam. Inf. 137(1), 61–86 (2015)
Recalde, L., Teruel, E., Silva, M.: Modeling and analysis of sequential processes that cooperate through buffers. IEEE Trans. Robot. Autom. 14(2), 267–277 (1998)
Sifakis, J.: Structural properties of Petri nets. In: Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 474–483. Springer, Heidelberg (1978). doi:10.1007/3-540-08921-7_95
Silva, M., Teruel, E., Colom, J.M.: Linear algebraic and linear programming techniques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998). doi:10.1007/3-540-65306-6_19
Teruel, E.: Structure Theory of Weighted Place/Transition Net Systems: The Equal Conflict Hiatus. Ph.D. thesis, DIEI. University of Zaragoza, Spain (1994)
Teruel, E., Colom, J.M., Silva, M.: Choice-free Petri nets: a model for deterministic concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern. Part A 27(1), 73–83 (1997)
Teruel, E., Silva, M.: Liveness and home states in equal conflict systems. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 415–432. Springer, Heidelberg (1993). doi:10.1007/3-540-56863-8_59
Teruel, E., Silva, M.: Structure theory of equal conflict systems. Theor. Comput. Sci. 153(1&2), 271–300 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hujsa, T., Devillers, R. (2017). On Liveness and Deadlockability in Subclasses of Weighted Petri Nets. In: van der Aalst, W., Best, E. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2017. Lecture Notes in Computer Science(), vol 10258. Springer, Cham. https://doi.org/10.1007/978-3-319-57861-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-57861-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57860-6
Online ISBN: 978-3-319-57861-3
eBook Packages: Computer ScienceComputer Science (R0)