Abstract
Recently, Factorization Bradley-Terry (FBT) model is introduced for fast move prediction in the game of Go. It has been shown that FBT outperforms the state-of-the-art fast move prediction system of Latent Factor Ranking (LFR). In this paper, we investigate the problem of integrating feature knowledge learned by FBT model in Monte Carlo Tree Search. We use the open source Go program Fuego as the test platform. Experimental results show that the FBT knowledge is useful in improving the performance of Fuego.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intellig. AI Games 4(1), 1–43 (2012)
Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75538-8_7
Coulom, R.: Computing “Elo ratings” of move patterns in the game of Go. ICGA J. 30(4), 198–208 (2007)
Enzenberger, M., Müller, M.: Fuego (2008–2015). http://fuego.sourceforge.net
Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego - an open-source framework for board games and Go engine based on Monte Carlo tree search. IEEE Trans. Comput. Intell. AI Games 2(4), 259–270 (2010)
Friedenbach, K.J.: Abstraction hierarchies: a model of perception and cognition in the game of Go. Ph.D. thesis, University of California, Santa Cruz (1980)
Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceedings of the 24th International Conference on Machine Learning (ICML 2007), pp. 273–280. ACM (2007)
Hunter, D.R.: MM algorithms for generalized Bradley-Terry models. Ann. Stat. 32(1), 384–406 (2004)
Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). doi:10.1007/11871842_29
Müller, M.: Computer Go. Artif. Intell. 134(1–2), 145–179 (2002)
Rosin, C.: Multi-armed bandits with episode context. Ann. Math. Artif. Intell. 61(3), 203–230 (2011)
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
Stern, D., Herbrich, R., Graepel, T.: Bayesian pattern ranking for move prediction in the game of Go. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 873–880. ACM (2006)
Wistuba, M., Schmidt-Thieme, L.: Move prediction in Go – modelling feature interactions using latent factors. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS (LNAI), vol. 8077, pp. 260–271. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40942-4_23
Xiao, C., Müller, M.: Factorization ranking model for move prediction in the game of Go. In: AAAI, pp. 1359–1365 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Xiao, C., Müller, M. (2017). Integrating Factorization Ranked Features in MCTS: An Experimental Study. In: Cazenave, T., Winands, M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds) Computer Games. CGW GIGA 2016 2016. Communications in Computer and Information Science, vol 705. Springer, Cham. https://doi.org/10.1007/978-3-319-57969-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-57969-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57968-9
Online ISBN: 978-3-319-57969-6
eBook Packages: Computer ScienceComputer Science (R0)