Abstract
The computational infrastructures are becoming larger and more complex. Their organization and interconnection are acquiring new dimensions with the increasing adoption of Cloud Technology and the establishment of Federations of cloud providers.
These large interconnected systems require monitoring at different levels of the infrastructure: from the availability of hardware resources to the effective provision of services and verification of terms of the established agreements.
Monitoring becomes a fundamental component of any Cloud Service or Federation, as the up-to-date information about resources in the system is extremely important to be used as an input to the scheduler component. The way in which the different members of such a distributed system obtain and distribute the resource information is what is known as Resource Information Distribution Policy.
Moving towards the obtention of a scalable and easy to maintain policy leads to interaction with the Peer to Peer (P2P) paradigm. Some of the proposed policies are based on establishing a ranking according to previous communications between nodes. These policies are known as learning based methods or Best-Neighbor (BN). However, the use of this type of policies shows poor performance and limited scalability compared with defacto Hierarchical or other hybrid policies.
In this work, we introduce pBN which is a fully distributed resource information policy based on P2P. We analyze some reasons that could produce the poor performance in standard BN and propose an improvement which shows performance and bandwidth consumption similar to Hierarchical policy and other hybrid variations. To compare the different policies, a specific simulation tool is used with different system sizes and exponential network topology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, D., Giles, J., Lee, K.W., Voruganti, K., Filali-Adib, K.: Policy-based validation of san configuration. In: Proceedings of Fifth IEEE International Workshop on Policies for Distributed Systems and Networks, POLICY 2004, pp. 77–86, June 2004
Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401, 130–131 (1999). http://adsabs.harvard.edu/abs/1999Natur.401.130A
Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A., Buyya, R.: Big data computing and clouds: trends and future directions. J. Parallel Distrib. Comput. 79–80, 3–15 (2014). http://www.sciencedirect.com/science/article/pii/S0743731514001452, special Issue on Scalable Systems for Big Data Management and Analytics
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: Proceedings of AAAI Conference on Weblogs and Social Media, May 2009. http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008). http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
Casanova, H., Legrand, A., Quinson, M.: SimGrid: a generic framework for large-scale distributed experiments. In: 10th IEEE International Conference on Computer Modeling and Simulation, pp. 126–131. IEEE Computer Society, Los Alamitos, March 2008
Cesario, E., Mastroianni, C., Talia, D.: Distributed volunteer computing for solving ensemble learning problems. Future Gen. Comput. Syst. (2015, in press). http://www.sciencedirect.com/science/article/pii/S0167739X15002332
Clayman, S., Toffetti, G., Galis, A., Chapman, C.: Monitoring services in a federated cloud: the RESERVOIR experience. In: Achieving Federated and Self-Manageable Cloud Infrastructures: Theory and Practice, pp. 242–265. IGI Global, May 2012
Ergu, D., Kou, G., Peng, Y., Shi, Y., Shi, Y.: The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. J. Supercomput. 64(3), 835–848 (2013). http://dx.doi.org/10.1007/s11227-011-0625-1
Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10, November 2008
Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. The Morgan Kaufmann Series in Computer Architecture and Design. Morgan Kaufmann Publishers Inc., San Francisco (2003)
Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001). http://portal.acm.org/citation.cfm?id=1080667
Ghafarian, T., Deldari, H., Javadi, B., Yaghmaee, M.H., Buyya, R.: Cycloidgrid: a proximity-aware P2P-based resource discovery architecture in volunteer computing systems. Future Gen. Comput. Syst. 29(6), 1583–1595 (2013). Including Special sections: High Performance Computing in the Cloud & Resource Discovery Mechanisms for P2P Systems. http://www.sciencedirect.com/science/article/pii/S0167739X12001665
Hasanzadeh, M., Meybodi, M.R.: Distributed optimization grid resource discovery. J. Supercomput. 71(1), 87–120 (2015)
Iamnitchi, A., Foster, I., Nurmi, D.: A peer-to-peer approach to resource discovery in grid environments. In: Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing HPDC-11 (HPDC 2002), p. 419. IEEE, Edinbourgh, July 2002
Iamnitchi, A., Foster, I.: A peer-to-peer approach to resource location in grid environments. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management: State of the Art and Future Trends, pp. 413–429. Kluwer Academic Publishers, Norwell (2004)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
Kertesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs, S., Rodríguez, M., Mercè, O., Marosi, A.C., Marco, J., Franch, X.: Enhancing federated cloud management with an integrated service monitoring approach. J. Grid Comput. 11(4), 699–720 (2013)
Liu, W., Nishio, T., Shinkuma, R., Takahashi, T.: Adaptive resource discovery in mobile cloud computing. Comput. Commun. 50, 119–129 (2014). Green Networking. http://www.sciencedirect.com/science/article/pii/S0140366414000590
Mastroianni, C., Talia, D., Verta, O.: A super-peer model for resource discovery services in large-scale grids. Future Gen. Comput. Syst. 21(8), 1235–1248 (2005). http://www.sciencedirect.com/science/article/pii/S0167739X05000701
Mastroianni, C., Talia, D., Verta, O.: Designing an information system for grids: comparing hierarchical, decentralized P2P and super-peer models. Parallel Comput. 34(10), 593–611 (2008)
Mattmann, C., Garcia, J., Krka, I., Popescu, D., Medvidovic, N.: Revisiting the anatomy and physiology of the grid. J. Grid Comput. 13(1), 19–34 (2015)
Meshkova, E., Riihijärvi, J., Petrova, M., Mähönen, P.: A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Comput. Netw. 52(11), 2097–2128 (2008). http://www.sciencedirect.com/science/article/pii/S138912860800100X
Mocskos, E.E., Yabo, P., Turjanski, P.G., Fernandez Slezak, D.: Grid matrix: a grid simulation tool to focus on the propagation of resource and monitoring information. Simul.-T. Soc. Mod. Sim. 88(10), 1233–1246 (2012)
Olaifa, M., Mapayi, T., Merwe, R.V.D.: Multi ant LA: an adaptive multi agent resource discovery for peer to peer grid systems. In: Science and Information Conference (SAI), pp. 447–451, July 2015
Pipan, G.: Use of the TRIPOD overlay network for resource discovery. Future Gen. Comput. Syst. 26(8), 1257–1270 (2010). http://www.sciencedirect.com/science/article/pii/S0167739X1000018X
Plale, B., Jacobs, C., Jensen, S., Liu, Y., Moad, C., Parab, R., Vaidya, P.: Understanding grid resource information management through a synthetic database benchmark/workload. In: Proceedings of the 2004 IEEE International Symposium on Cluster Computing and the Grid, CCGRID 2004, pp. 277–284. IEEE Computer Society, Washington, April 2004
Puppin, D., Moncelli, S., Baraglia, R., Tonellotto, N., Silvestri, F.: A grid information service based on peer-to-peer. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 454–464. Springer, Heidelberg (2005). doi:10.1007/11549468_52
Ranjan, R., Harwood, A., Buyya, R.: Peer-to-peer-based resource discovery in global grids: a tutorial. IEEE Commun. Surv. Tutor. 10(2), 6–33 (2008)
Ranjan, R., Zhao, L.: Peer-to-peer service provisioning in cloud computing environments. J. Supercomput. 65(1), 154–184 (2013)
Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceedings of First International Conference on Peer-to-Peer Computing, pp. 99–100, August 2001
Shiers, J.: The worldwide LHC computing grid (worldwide LCG). Comput. Phys. Commun. 177(1–2), 219–223 (2007)
Trunfio, P., Talia, D., Papadakis, C., Fragopoulou, P., Mordacchini, M., Pennanen, M., Popov, K., Vlassov, V., Haridi, S.: Peer-to-peer resource discovery in grids: models and systems. Future Gen. Comput. Syst. 23(7), 864–878 (2007)
Verghelet, P., Mocskos, E.: Improvements to super-peer policy communication mechanisms. In: Osthoff, C., Navaux, P.O.A., Barrios Hernandez, C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 73–86. Springer, Cham (2015). doi:10.1007/978-3-319-26928-3_6
Verghelet, P., Slezak, D.F., Turjanski, P., Mocskos, E.: Using distributed local information to improve global performance in grids. CLEIej 15(3), 8 (2012). http://www.clei.cl/cleiej/papers/v15i3p7.pdf
Williams, D.N., Drach, R., Ananthakrishnan, R., Foster, I., Fraser, D., Siebenlist, F., Bernholdt, D., Chen, M., Schwidder, J., Bharathi, S., et al.: The earth system grid: enabling access to multimodel climate simulation data. Bull. Am. Meteorol. Soc. 90(2), 195–205 (2009)
Acknowledgments
E.M. is researcher at the CONICET. This work was partially supported by grants from Universidad de Buenos Aires (UBACyT 20020130200096BA), CONICET (PIP 11220110100379 and PIO 13320150100020CO), and ANPCyT (PICT-2015-2761 and PICT-2015-0370).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Verghelet, P., Mocskos, E. (2017). Efficient P2P Inspired Policy to Distribute Resource Information in Large Distributed Systems. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-57972-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57971-9
Online ISBN: 978-3-319-57972-6
eBook Packages: Computer ScienceComputer Science (R0)