Abstract
This chapter is a presentation of the programming philosophy behind a novel numerical particle method for the simulation of the interaction of compressible fluids and elastic structures, specifically designed to run in multiple Graphics Processing Units (GPUs). The code has been developed using the CUDA C Application Programming Interface (API) for fine-grain parallelism in the GPUs and the Message Passing Interface library (MPI) for the distribution of threads in the Central Processing Units (CPUs) and the communication of shared data between GPUs. The numerical algorithm does not use smoothing kernels nor weighting functions for the computation of differential operators. A novel approach is used to compute gradients using averages of radial finite differences and divergences using Gauss’ theorem by approximations based on area integrals around local spheres around each particle. The interactions of the particles inside the fluid are modelled using the isothermal, compressible Navier-Stokes equations and a simple equation of state. The elastic material is modelled using inter-particle springs with damping. Results show the potential of the method for the simulation of flows in complex geometries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Steger, J.L.: On application of body conforming curvilinear grids for finite difference solution of external flow. Appl. Math. Comput. 10–11, 295–316 (1982)
Karki, K.C., Patankar, S.V.: Calculation procedure for viscous incompressible flows in complex geometries. Numer. Heat Transfer 14(3), 295–307 (1988)
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
Bijl, H., Wesseling, P.: A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys. 141(2), 153–173 (1998)
Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37(3), 289–335 (1980)
Cottet, G.H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)
Ploumhans, P., Winckelmans, G.S., Salmon, J.K., Leonard, A., Warren, M.S.: Vortex methods for direct numerical simulation of three-dimensional Bluff body flows: application to the sphere at Re = 300, 500 and 1000. J. Comput. Phys. 178(2), 427–463 (2002)
Koumoutsakos, P.: Active control of vortex-wall interactions. Phys. Fluids 9(12), 3808–3816 (1997)
Strang, G., Fix, G.: An Analysis of the Finite Element Method. SIAM, Wesley-Cambridge Press, Philadelphia (1973)
Kuzmin, D., Hämäläinen, J.: Finite Element Methods for Computational Fluid Dynamics: A Practical Guide. Computational Science & Engineering. SIAM, Philadelphia (2014)
Löner, R., Morgan, K., Peraire, J., Zienkiewicz, O.C.: The free-lagrange method. In: Fritts, M.J., Crowley, W.P., Trease, H. (eds.) Recent developments in FEM-CFD. Lecture Notes in Physics, pp. 236–254. Springer, Heidelberg (2005)
Schweitzer, M.A.: Generalizations of the finite element method. Cent. Eur. J. Math. 10(1), 3–24 (2012)
Taylor, C.A., Hughes, T.J.R., Zarins, C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1), 155–196 (1998)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Ziane Khodja, L., Couturier, R., Glersch, A., Bahi, J.M.: Parallel sparse linear solver with GMRES method using minimization techniques of communications for GPU clusters. J. Supercomput. 69(1), 200–224 (2014)
Whiting, C.H., Jansen, K.E.: A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35(1), 93–116 (2001)
Quarteroni, A.: Numerical Models for Differential Problems. Springer, Heidelberg (2009)
Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astrophys. 30, 543–574 (1992)
Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1760 (2005)
Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid-structure interaction by SPH. Comput. Struct. 85(11), 879–890 (2007)
Sigalotti, L.D.G., Klapp, J., Rendon, O., Vargas, C.A., Peña-Polo, F.: On the kernel and particle consistency in smoothed particle hydrodynamics. J. Appl. Numer. Math. 108, 242–255 (2016)
Sigalotti, L.D.G., Rendon, O., Klapp, J., Vargas, C.A., y Campos, K.: A new insight into the consistency of Smoothed Particle Hydrodynamics. arXiv:1644200 [physics.com-ph] 21 August 2016
Donea, J., Huerta, A.: Finite Element Flow Problems. Wiley, Hoboken (2003)
Nickolls, J., Dally, W.J.: The GPU computing era. IEEE Micro 30(2), 56–69 (2010)
Keckler, S.W., Dally, W.J., Khailany, B., Garland, M., Glasco, D.: GPUs and the future of parallel computing. IEEE Micro 31(5), 7–17 (2011)
NVIDIA CUDA C Programming Guide, version 7.5, Nvidia (2015)
Koshizuka, S., Oka, Y.: Moving particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123, 421–434 (1996)
Becerra-Sagredo, J., Mandujano, F., Málaga, C., Klapp, J., Teresa, I.: A template for scalable continuum dynamic simulations in multiple GPUs. In: Gitler, I., Klapp, J. (eds.) ISUM 2015. CCIS, vol. 595, pp. 473–484. Springer, Cham (2016). doi:10.1007/978-3-319-32243-8_33
Becerra-Sagredo, J.T., Málaga, C., Mandujano, F.: Moments preserving and high-resolution semi-Lagrangian advection scheme. SIAM J. Sci. Comput. 38(4), A2141–A2161 (2016)
Acknowledgements
This work was partially supported by ABACUS, CONACyT grant EDOMEX-2011-C01-165873. The calculations for this work have been performed in the Abacus I supercomputer.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Becerra-Sagredo, J., Sigalotti, L., Klapp, J. (2017). A Particle Method for Fluid-Structure Interaction Simulations in Multiple GPUs. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-57972-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57971-9
Online ISBN: 978-3-319-57972-6
eBook Packages: Computer ScienceComputer Science (R0)