Skip to main content

The Impetus Project: Using abacus for the High Performance Computation of Radiative Tables for Accretion onto a Galaxy Black Hole

  • Conference paper
  • First Online:
Book cover High Performance Computing (CARLA 2016)

Abstract

We present the intensive calculations of digital tables for the radiative terms that appear in the energy and momentum equations used to simulate the accretion onto supermassive black holes (SMBHs) at the centers of galaxies. Cooling and heating rates are presented, calculated with a Spectral Energy Distribution constructed from: an accretion disk plus an X-ray power-law and an accretion disk plus a Corona. The electronic structures of atoms, the photoionization cross-sections, and the recombination rates are treated in great detail. With the recent discovery of outflows originating at sub-parsec scales, these tables may provide a useful tool for modeling gas accretion processes onto a SMBH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badnell, N.R.: Dielectronic recombination of Fe 3p\(^{q}\) ions: a key ingredient for describing X-ray absorption in active galactic nuclei. ApJ 651, L73–L76 (2006)

    Article  Google Scholar 

  2. Badnell, N.R., O’Mullane, M.G., Summers, H.P., Altun, Z., Bautista, M.A., Colgan, J., Gorczyca, T.W., Mitnik, D.M., Pindzola, M.S., Zatsarinny, O.: Dielectronic recombination data for dynamic finite-density plasmas. I. Goals and methodology. A&A 406, 1151–1165 (2003)

    Article  Google Scholar 

  3. Barai, P.: Large-scale impact of the cosmological population of expanding radio galaxies. ApJ 682, L17–L20 (2008)

    Article  Google Scholar 

  4. Barai, P., Proga, D., Nagamine, K.: Smoothed particle hydrodynamics simulations of black hole accretion: a step to model black hole feedback in galaxies. MNRAS 418, 591–611 (2011)

    Article  Google Scholar 

  5. Behar, E., Sako, M., Kahn, S.M.: Soft X-ray absorption by \(Fe^{0+}\) to \(Fe^{15+}\) in active galactic nuclei. ApJ 563, 497–504 (2001)

    Article  Google Scholar 

  6. Blondin, J.M.: The shadow wind in high-mass X-ray binaries. ApJ 435, 756–766 (1994)

    Article  Google Scholar 

  7. Ciotti, L., Ostriker, J.P.: Cooling flows and quasars. II. Detailed models of feedback-modulated accretion flows. ApJ 551, 131–152 (2001)

    Article  Google Scholar 

  8. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: CHIANTI - an atomic database for emission lines. A&AS 125, 149–173 (1997)

    Article  Google Scholar 

  9. Fabian, A.C.: The obscured growth of massive black holes. MNRAS 308, L39–L43 (1999)

    Article  Google Scholar 

  10. Faucher-Giguère, C.-A., Quataert, E.: The physics of galactic winds driven by active galactic nuclei. MNRAS 425, 605–622 (2012)

    Article  Google Scholar 

  11. Ferland, G.J., Korista, K.T., Verner, D.A., Ferguson, J.W., Kingdon, J.B., Verner, E.M.: CLOUDY 90: numerical simulation of plasmas and their spectra. PASP 110, 761–778 (1998)

    Article  Google Scholar 

  12. Ferland, G.J., Porter, R.L., van Hoof, P.A.M., Williams, R.J.R., Abel, N.P., Lykins, M.L., Shaw, G., Henney, W.J., Stancil, P.C.: The 2013 release of cloudy. Rev. Mex. Astron. Astrofis. 49, 137–163 (2013)

    Google Scholar 

  13. Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S.M., Filippenko, A.V., Green, R., Grillmair, C., Ho, L.C., Kormendy, J., Lauer, T.R., Magorrian, J., Pinkney, J., Richstone, D., Tremaine, S.: A relationship between nuclear black hole mass and galaxy velocity dispersion. ApJ 539, L13–L16 (2000)

    Article  Google Scholar 

  14. Germain, J., Barai, P., Martel, H.: Anisotropic active galactic nucleus outflows and enrichment of the intergalactic mediumI. I. Metal distribution. ApJ 704, 1002–1020 (2009)

    Article  Google Scholar 

  15. Grevesse, N., Asplund, M., Sauval, A.J., Scott, P.: The chemical composition of the sun. Astrophys. Space Sci. 328, 179–183 (2010)

    Article  Google Scholar 

  16. Kallman, T., Bautista, M.: Photoionization and high-density gas. ApJS 133, 221–253 (2001)

    Article  Google Scholar 

  17. Landi, E., Del Zanna, G., Young, P.R., Dere, K.P., Mason, H.E.: CHIANTI-an atomic database for emission lines. XII. Version 7 of the database. ApJ 744, 99 (2012)

    Article  Google Scholar 

  18. Li, Y., Hernquist, L., Robertson, B., Cox, T.J., Hopkins, P.F., Springel, V., Gao, L., Di Matteo, T., Zentner, A.R., Jenkins, A., Yoshida, N.: Formation of z\(^\sim \)6 quasars from hierarchical galaxy mergers. ApJ 665, 187–208 (2007)

    Article  Google Scholar 

  19. Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., Faber, S.M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., Lauer, T.: The demography of massive dark objects in galaxy centers. AJ 115, 2285–2305 (1998)

    Article  Google Scholar 

  20. Mościbrodzka, M., Proga, D.: Thermal and dynamical properties of gas accreting onto a supermassive black hole in an active galactic nucleus. ApJ 767, 156 (2013)

    Article  Google Scholar 

  21. Netzer, H.: The iron unresolved transition array in active galactic nuclei. ApJ 604, 551–555 (2004)

    Article  Google Scholar 

  22. Niederwanger, F., Öttl, S., Kimeswenger, S., Kissmann, R., Reitberger, K.: 3D radiative transfer models of planetary nebulae with CRONOS and CLOUDY. In: Asymmetrical Planetary Nebulae VI Conference, p. 67, April 2014

    Google Scholar 

  23. Novak, G.S., Ostriker, J.P., Ciotti, L.: Feedback from central black holes in elliptical galaxies: two-dimensional models compared to one-dimensional models. ApJ 737, 26 (2011)

    Article  Google Scholar 

  24. Ostriker, J.P., Choi, E., Ciotti, L., Novak, G.S., Proga, D.: Momentum driving: which physical processes dominate active galactic nucleus feedback? ApJ 722, 642–652 (2010)

    Article  Google Scholar 

  25. Öttl, S., Kimeswenger, S., Zijlstra, A.A.: Ionization structure of multiple-shell planetary nebulae. I. NGC 2438. A&A 565, 87 (2014)

    Article  Google Scholar 

  26. Proga, D.: Dynamics of accretion flows irradiated by a quasar. ApJ 661, 693–702 (2007)

    Article  Google Scholar 

  27. Proga, D., Kallman, T.R.: Dynamics of line-driven disk winds in active galactic nuclei. II. Effects of disk radiation. ApJ 616, 688–695 (2004)

    Article  Google Scholar 

  28. Proga, D., Stone, J.M., Kallman, T.R.: Dynamics of Line-driven disk winds in active galactic nuclei. ApJ 543, 686–696 (2000)

    Article  Google Scholar 

  29. Ramírez, J.M.: Physical and kinematical properties of the X-ray absorber in the broad absorption line quasar APM 08279+5255. A&A 489, 57–68 (2008)

    Article  Google Scholar 

  30. Ramírez, J.M., Komossa, S., Burwitz, V., Mathur, S.: Chandra LETGS spectroscopy of the quasar MR 2251-178 and its warm absorber. ApJ 681, 965–981 (2008)

    Article  Google Scholar 

  31. Salpeter, E.E.: Accretion of interstellar matter by massive objects. ApJ 140, 796–800 (1964)

    Article  Google Scholar 

  32. Salz, M., Banerjee, R., Mignone, A., Schneider, P.C., Czesla, S., Schmitt, J.H.M.M.: TPCI the PLUTO-CLOUDY Interface. A versatile coupled photoionization hydrodynamics code. A&A 576, 21 (2015)

    Article  Google Scholar 

  33. Tombesi, F., Meléndez, M., Veilleux, S., Reeves, J.N., González-Alfonso, E., Reynolds, C.S.: Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy. Nature 519, 436–438 (2015)

    Article  Google Scholar 

  34. Vignali, C., Iwasawa, K., Comastri, A., Gilli, R., Lanzuisi, G., Ranalli, P., Cappelluti, N., Mainieri, V., Georgantopoulos, I., Carrera, F.J., Fritz, J., Brusa, M., Brandt, W.N., Bauer, F.E., Fiore, F., Tombesi, F.: The XMM deep survey in the CDF-S. IX. An X-ray outflow in a luminous obscured quasar at z\(^\sim \)1.6. ArXiv e-prints, September 2015

    Google Scholar 

Download references

Acknowledgments

impetus is a collaboration project between the abacus-Centro de Matemáticas Aplicadas y Cómputo de Alto Rendimiento of Cinvestav-IPN, the Centro de Física of the Instituto Venezolano de Investigaciones Científicas (IVIC), and the Área de Física de Procesos Irreversibles of the Departamento de Ciencias Básicas of the Universidad Autónoma Metropolitana–Azcapotzalco (UAM-A) aimed at the SPH modeling of astrophysical flows. The project is supported by abacus under grant EDOMEX-2011-C01-165873, by IVIC under the project 2013000259, and by UAM-A through internal funds. JMRV thanks the hospitality, support, and computing facilities of abacus, where this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Ramírez-Velasquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ramírez-Velasquez, J.M., Klapp, J., Gabbasov, R., Cruz, F., Sigalotti, L.D.G. (2017). The Impetus Project: Using abacus for the High Performance Computation of Radiative Tables for Accretion onto a Galaxy Black Hole. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics