Abstract
Balance Scorecard (BS) is an important part of human resource management in any organization or industry. It used to cascade the organization vision and its expectation and develop the employment capability. Balance scorecard may have many factors. In order to produce the best product and to retain the trust of customers, the industry should be able to identify which area has to be concentrated with higher priority in the Balance Scorecard. This situation lead with an uncertainty to multi criteria decision making. In this work, an attempt has been made for ranking the factors in the Balance Scorecard using Intuitionistic fuzzy analytical hierarchy process with fuzzy Delphi method.
Currently Rajaprakash is research scholar at SCSVMV University and an Associate Professor at the Department of Computer Science and Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission University Chennai, India.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Klir, G.J.: Fuzzy Set and Fuzzy Logic Theory and Application. PTR Publisher, New York (1995)
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)
Xu, Z., Liao, H.: Intuitionistic fuzzy analytic hierarchy process. IEEE Trans. Fuzzy Syst. 22(4), 749–761 (2014)
Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)
Kaufmann, A., Gupta, M.M.: Fuzzy Mathematical Models in Engineering and Management Science. Elsevier Science Inc., New York (1988)
Hsu, Y.L., Lee, C.H., Kreng, V.B.: The application of fuzzy delphi method and fuzzy ahp in lubricant regenerative technology selection. Expert Syst. Appl. 37(1), 419–425 (2010)
Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001)
Saaty, T.: The Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York (1980)
Akram, M., Shahzad, S., Butt, A., Khaliq, A.: Intuitionistic fuzzy logic control for heater fans. Math. Comput. Sci. 7(3), 367–378 (2013)
Szmidt, E., Kacprzyk, J.: Intuitionistic fuzzy sets in some medical applications. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 148–151. Springer, Heidelberg (2001). doi:10.1007/3-540-45493-4_19
Sadiq, R., Tesfamariam, S.: Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch. Env. Res. Risk Assess. 23, 75–91 (2009)
Rajaprakash, S., Ponnusamy, R., Pandurangan, J.: Determining the customer satisfaction in automobile sector using the intuitionistic fuzzy analytical hierarchy process. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS (LNAI), vol. 8891, pp. 239–255. Springer, Cham (2014). doi:10.1007/978-3-319-13817-6_24
Chen, Y.C., Yu, T.H., Tsui, P.L., Lee, C.S.: A fuzzy ahp approach to construct international hotel spa atmosphere evaluation model. Quality 48(2), 645–657 (2014)
Catak, F.O., Karabas, S., Yildirim, S.: Fuzzy analytic hierarchy based DBMS selection in Turkish National Identity Card Management project. Int. J. Inf. Sci. Tech. (IJIST) 2(4), 29–38 (2012)
Izadikhah, M.: Group decision making process for supplier selection with TOPSIS method under interval-valued intuitionistic fuzzy numbers. Adv. Fuzzy Syst. 2012(2), 2 (2012)
Rajaprakash, S., Ponnusamy, R.: Determining students expectation in present education system using fuzzy analytic hierarchy process. In: Prasath, R., Kathirvalavakumar, T. (eds.) MIKE 2013. LNCS (LNAI), vol. 8284, pp. 553–566. Springer, Cham (2013). doi:10.1007/978-3-319-03844-5_55
Abdullah, L., Jaafar, S., Taib, I.: Intuitionistic fuzzy analytic hierarchy process approach in ranking of human capital indicators. J. Appl. Sci. 13(3), 423–429 (2013)
Tapan Kumar, R., Garai, A.: Intuitionistic fuzzy delphi method: more realistic and interactive forecasting tool. Notes Intuitionistic Fuzzy Sets 18(50), 37–50 (2012)
Xu, Z.: Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177(11), 2363–2379 (2007)
Kong, F., Liu, H.: Appling fuzzy analytic hierarchy process to Evaluate Success Factors of E-Commerce. Int. J. Inf. Syst. Sci. 1(3–4), 406–412 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rajaprakash, S., Ponnusamy, R. (2017). Determining the Balance Scorecard in Sheet Metal Industry Using the Intuitionistic Fuzzy Analytical Hierarchy Process with Fuzzy Delphi Method. In: Prasath, R., Gelbukh, A. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2016. Lecture Notes in Computer Science(), vol 10089. Springer, Cham. https://doi.org/10.1007/978-3-319-58130-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-58130-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58129-3
Online ISBN: 978-3-319-58130-9
eBook Packages: Computer ScienceComputer Science (R0)