Skip to main content

Determining the Balance Scorecard in Sheet Metal Industry Using the Intuitionistic Fuzzy Analytical Hierarchy Process with Fuzzy Delphi Method

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10089))

Abstract

Balance Scorecard (BS) is an important part of human resource management in any organization or industry. It used to cascade the organization vision and its expectation and develop the employment capability. Balance scorecard may have many factors. In order to produce the best product and to retain the trust of customers, the industry should be able to identify which area has to be concentrated with higher priority in the Balance Scorecard. This situation lead with an uncertainty to multi criteria decision making. In this work, an attempt has been made for ranking the factors in the Balance Scorecard using Intuitionistic fuzzy analytical hierarchy process with fuzzy Delphi method.

Currently Rajaprakash is research scholar at SCSVMV University and an Associate Professor at the Department of Computer Science and Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission University Chennai, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klir, G.J.: Fuzzy Set and Fuzzy Logic Theory and Application. PTR Publisher, New York (1995)

    MATH  Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, Z., Liao, H.: Intuitionistic fuzzy analytic hierarchy process. IEEE Trans. Fuzzy Syst. 22(4), 749–761 (2014)

    Article  Google Scholar 

  5. Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)

    Article  MATH  Google Scholar 

  6. Kaufmann, A., Gupta, M.M.: Fuzzy Mathematical Models in Engineering and Management Science. Elsevier Science Inc., New York (1988)

    MATH  Google Scholar 

  7. Hsu, Y.L., Lee, C.H., Kreng, V.B.: The application of fuzzy delphi method and fuzzy ahp in lubricant regenerative technology selection. Expert Syst. Appl. 37(1), 419–425 (2010)

    Article  Google Scholar 

  8. Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Saaty, T.: The Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  10. Akram, M., Shahzad, S., Butt, A., Khaliq, A.: Intuitionistic fuzzy logic control for heater fans. Math. Comput. Sci. 7(3), 367–378 (2013)

    Article  MATH  Google Scholar 

  11. Szmidt, E., Kacprzyk, J.: Intuitionistic fuzzy sets in some medical applications. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 148–151. Springer, Heidelberg (2001). doi:10.1007/3-540-45493-4_19

    Chapter  Google Scholar 

  12. Sadiq, R., Tesfamariam, S.: Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch. Env. Res. Risk Assess. 23, 75–91 (2009)

    Article  MathSciNet  Google Scholar 

  13. Rajaprakash, S., Ponnusamy, R., Pandurangan, J.: Determining the customer satisfaction in automobile sector using the intuitionistic fuzzy analytical hierarchy process. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS (LNAI), vol. 8891, pp. 239–255. Springer, Cham (2014). doi:10.1007/978-3-319-13817-6_24

    Google Scholar 

  14. Chen, Y.C., Yu, T.H., Tsui, P.L., Lee, C.S.: A fuzzy ahp approach to construct international hotel spa atmosphere evaluation model. Quality 48(2), 645–657 (2014)

    Google Scholar 

  15. Catak, F.O., Karabas, S., Yildirim, S.: Fuzzy analytic hierarchy based DBMS selection in Turkish National Identity Card Management project. Int. J. Inf. Sci. Tech. (IJIST) 2(4), 29–38 (2012)

    Google Scholar 

  16. Izadikhah, M.: Group decision making process for supplier selection with TOPSIS method under interval-valued intuitionistic fuzzy numbers. Adv. Fuzzy Syst. 2012(2), 2 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Rajaprakash, S., Ponnusamy, R.: Determining students expectation in present education system using fuzzy analytic hierarchy process. In: Prasath, R., Kathirvalavakumar, T. (eds.) MIKE 2013. LNCS (LNAI), vol. 8284, pp. 553–566. Springer, Cham (2013). doi:10.1007/978-3-319-03844-5_55

    Chapter  Google Scholar 

  18. Abdullah, L., Jaafar, S., Taib, I.: Intuitionistic fuzzy analytic hierarchy process approach in ranking of human capital indicators. J. Appl. Sci. 13(3), 423–429 (2013)

    Article  Google Scholar 

  19. Tapan Kumar, R., Garai, A.: Intuitionistic fuzzy delphi method: more realistic and interactive forecasting tool. Notes Intuitionistic Fuzzy Sets 18(50), 37–50 (2012)

    Google Scholar 

  20. Xu, Z.: Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177(11), 2363–2379 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kong, F., Liu, H.: Appling fuzzy analytic hierarchy process to Evaluate Success Factors of E-Commerce. Int. J. Inf. Syst. Sci. 1(3–4), 406–412 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajaprakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rajaprakash, S., Ponnusamy, R. (2017). Determining the Balance Scorecard in Sheet Metal Industry Using the Intuitionistic Fuzzy Analytical Hierarchy Process with Fuzzy Delphi Method. In: Prasath, R., Gelbukh, A. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2016. Lecture Notes in Computer Science(), vol 10089. Springer, Cham. https://doi.org/10.1007/978-3-319-58130-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58130-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58129-3

  • Online ISBN: 978-3-319-58130-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics