Skip to main content

The Power of Analogue-Digital Machines

(Extended Abstract)

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10240))

  • 425 Accesses

Abstract

The ARNN abstract computer, extensively analysed in [28], introduces an analogue-digital model of computation in discrete time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Analogue Recurrent Neural Net.

  2. 2.

    Real weights are quite common in the neural net literature.

  3. 3.

    A few rational weights being enough for the purpose.

  4. 4.

    In fact, the truncated reals. The amount of precision depends on the size of the input.

  5. 5.

    This is still conjecture.

  6. 6.

    ARNN computes with a two-sided experiment.

  7. 7.

    A time constructible function.

References

  1. Ambaram, T., Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital model of computation: turing machines with physical oracles. In: Adamatzky, A. (ed.) Advances in Unconventional Computing. ECC, vol. 22, pp. 73–115. Springer, Cham (2017). doi:10.1007/978-3-319-33924-5_4

    Chapter  Google Scholar 

  2. Beggs, E., Cortez, P., Costa, J.F., Tucker, J.V.: A hierarchy for \( BPP //\log \!\star \) based on counting calls to an oracle. In: Adamatzky, A. (ed.) Emergent Computation. ECC, vol. 24, pp. 39–56. Springer, Cham (2017). doi:10.1007/978-3-319-46376-6_3

    Chapter  Google Scholar 

  3. Beggs, E., Cortez, P., Costa, J.F., Tucker, J.V.: Classifying the computational power of stochastic physical oracles (2017, submitted)

    Google Scholar 

  4. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: Oracles that measure thresholds: the Turing machine and the broken balance. J. Log. Comput. 23(6), 1155–1181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as oracles. Proc. Roy. Soc. Ser. A (Math. Phys. Eng. Sci.) 464(2098), 2777–2801 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as oracles II. Upper bounds. Proc. Roy. Soc. Ser. A (Math. Phys. Eng. Sci.) 465(2105), 1453–1465 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: A natural computation model of positive relativisation. Int. J. Unconv. Comput. 10(1–2), 111–141 (2013)

    Google Scholar 

  8. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: Computations with oracles that measure vanishing quantities. Math. Struct. Comput. Sci. (2017, to appear)

    Google Scholar 

  9. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital church-turing thesis. Int. J. Found. Comput. Sci. 25(4), 373–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beggs, E., Costa, J.F., Tucker, J.V.: Computational models of measurement and Hempel’s axiomatization. In: Carsetti, A. (ed.) Causality, Meaningful Complexity and Embodied Cognition. (TDLA), vol. 46, pp. 155–184. Springer, Dordrecht (2010). doi:10.1007/978-90-481-3529-5_9

    Chapter  Google Scholar 

  11. Beggs, E., Costa, J.F., Tucker, J.V.: Limits to measurement in experiments governed by algorithms. Math. Struct. Comput. Sci. 20(06), 1019–1050 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beggs, E., Costa, J.F., Tucker, J.V.: Physical oracles: the Turing machine and the Wheatstone bridge. Stud. Logica. 95(1–2), 279–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beggs, E., Costa, J.F., Tucker, J.V.: Axiomatising physical experiments as oracles to algorithms. Philos. Trans. Roy. Soc. Ser. A (Math. Phys. Eng. Sci.) 370(12), 3359–3384 (2012)

    Article  MATH  Google Scholar 

  14. Beggs, E., Costa, J.F., Tucker, J.V.: The impact of models of a physical oracle on computational power. Math. Struct. Comput. Sci. 22(5), 853–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beggs, E., Costa, J.F., Tucker, J.V.: Three forms of physical measurement and their computability. Rev. Symb. Log. 7(4), 618–646 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bekey, G.A., Karplus, W.J.: Hybrid Computation. Wiley, Hoboken (1968)

    MATH  Google Scholar 

  17. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid systems. Theoret. Comput. Sci. 168(2), 417–459 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carnap, R.: Philosophical Foundations of Physics. Basic Books, New York City (1966)

    Google Scholar 

  19. Costa, J.F., Leong, R.: The ARNN model relativizes P == NP and P =/= NP. Theoret. Comput. Sci. 499(1), 2–22 (2013)

    Article  MathSciNet  Google Scholar 

  20. Davis, M.: The myth of hypercomputation. In: Teuscher, C. (ed.) Alan Turing: The Life and Legacy of a Great Thinker, pp. 195–212. Springer, Heidelberg (2006). doi:10.1007/978-3-662-05642-4_8

    Google Scholar 

  21. Davis, M.: Why there is no such discipline as hypercomputation. Appl. Math. Comput. 178(1), 4–7 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Geroch, R., Hartle, J.B.: Computability and physical theories. Found. Phys. 16(6), 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  23. Hempel, C.G.: Fundamentals of concept formation in empirical science. Int. Encycl. Unified Sci. 2(7) (1952)

    Google Scholar 

  24. Kelly, K.T.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  25. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural networks. Inf. Comput. 128(1), 48–56 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krantz, D.H., Duncan Luce, R., Suppes, P., Tversky, A.: Foundations of Measurement, vol. I. Dover, Mineola (2007)

    MATH  Google Scholar 

  27. Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64(20), 2354–2357 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  29. Woods, D., Naughton, T.J.: An optical model of computation. Theoret. Comput. Sci. 334(2005), 227–258 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Younger, A.S., Redd, E., Siegelmann, H.: Development of physical super-turing analog hardware. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 379–391. Springer, Cham (2014). doi:10.1007/978-3-319-08123-6_31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Félix Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Costa, J.F. (2017). The Power of Analogue-Digital Machines. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58187-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58186-6

  • Online ISBN: 978-3-319-58187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics