Abstract
In this paper we propose a simple tensor-based approach to temporal features modeling that is applicable as means for logistic regression (LR) enhancement. We evaluate experimentally the performance of an LR system based on the proposed model in the Click-Through Rate (CTR) estimation scenario involving processing of very large multi-attribute data streams. We compare our approach to the existing approaches to temporal features modeling from the perspective of the Real-Time Bidding (RTB) CTR estimation scenario. On the basis of an extensive experimental evaluation, we demonstrate that the proposed approach enables achieving an improvement of the quality of CTR estimation. We show this improvement in a Big Data application scenario of the Web user feedback prediction realized within an RTB Demand-Side Platform.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn, pp. 421–436. Springer, Heidelberg (2012)
Bro, R., Smilde, A.K.: Centering and scaling in component analysis. J. Chemometr. 17(1), 16–33 (2003)
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive Web: Methods and Strategies of Web Personalization. Springer, Berlin (2007)
Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction for display advertising. ACM Trans. Intell. Syst. Technol. 5(4), 61:1–61:34 (2014)
Cichocki, A.: Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions. CoRR abs/1403.2048 (2014)
Ciesielczyk, M., Szwabe, A., Morzy, M., Misiorek, P.: Progressive random indexing: dimensionality reduction preserving local network dependencies. ACM Trans. Internet Technol. 17(2), 20:1–20:21 (2017). http://doi.acm.org/10.1145/2996185
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: ranking semantic web data by tensor decomposition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 213–228. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04930-9_14
He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., Candela, J.Q.: Practical lessons from predicting clicks on ads at Facebook. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD 2014, NY, USA, pp. 5:1–5:9. ACM, New York (2014)
Japkowicz, N., Stefanowski, J.: Big Data Analysis: New Algorithms for a New Society. Studies in Big Data. Springer International Publishing, Heidelberg (2015)
Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 363–372. IEEE Computer Society, Washington, DC (2008)
Kruczyk, M., Baltzer, N., Mieczkowski, J., Draminski, M., Koronacki, J., Komorowski, J.: Random reducts: a Monte Carlo rough set-based method for feature selection in large datasets. Fundam. Inform. 127(1–4), 273–288 (2013)
Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)
Nickel, M., Tresp, V.: An analysis of tensor models for learning on structured data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23–27, 2013, Proceedings, Part II, pp. 272–287. Springer, Heidelberg (2013)
Provost, F., Fawcett, T.: Data science and its relationship to big data and data-driven decision making. Big Data 1(1), 51–59 (2013)
Shan, L., Lin, L., Sun, C., Wang, X.: Predicting ad click-through rates via feature-based fully coupled interaction tensor factorization. Electron. Commer. Res. Appl. 16, 30–42 (2016)
Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer US, Heidelberg (2011)
Sutskever, I., Tenenbaum, J.B., Salakhutdinov, R.R.: Modelling relational data using Bayesian clustered tensor factorization. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 1821–1828. Curran Associates, Inc. (2009)
Szwabe, A., Ciesielczyk, M., Misiorek, P.: Long-tail recommendation based on reflective indexing. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 142–151. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25832-9_15
Szwabe, A., Misiorek, P., Walkowiak, P.: Tensor-based relational learning for ontology matching. In: Advances in Knowledge-Based and Intelligent Information and Engineering Systems - 16th Annual KES Conference, San Sebastian, Spain, 10–12 September 2012, pp. 509–518 (2012)
Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer, Cham (2016). doi:10.1007/978-3-319-30671-1_4
Zhang, W., Yuan, S., Wang, J.: Optimal real-time bidding for display advertising. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 1077–1086. ACM, New York (2014)
Zhang, W., Yuan, S., Wang, J.: Real-time bidding benchmarking with iPinYou dataset. CoRR abs/1407.7, pp. 1–10 (2014)
Acknowledgments
This work is supported by the Polish National Science Centre, grant DEC-2011/01/D/ST6/06788.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Szwabe, A., Misiorek, P., Ciesielczyk, M. (2017). Tensor-Based Modeling of Temporal Features for Big Data CTR Estimation. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-58274-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58273-3
Online ISBN: 978-3-319-58274-0
eBook Packages: Computer ScienceComputer Science (R0)