Skip to main content

Mathematical Models for Malware Propagation in Wireless Sensor Networks: An Analysis

  • Chapter
  • First Online:
Computer and Network Security Essentials

Abstract

Wireless sensor networks (WSNs) are a fundamental part of many emerging ICT scenarios, and, consequently, there are several security threats to which they are exposed. In recent years, malware propagation has gained special attention due to the resource improvements of sensor nodes of WSNs. The main goal of this work is to perform an analysis of the mathematical models proposed in the scientific literature by focusing the attention on network models. From this study, some suggestions in order to design efficient mathematical models for malware propagation in WSNs are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A. L. (2002). Linked. Cambridge, MA: Plume.

    Google Scholar 

  2. Bluetooth SIG. (2010). Bluetooth specification version 4. Kirkland, WA, USA: The Bluetooth Special Interest Group.

    Google Scholar 

  3. Brauer, F. (2009). Mathematical epidemiology is not an oxymoron. BMC Public Health, 9, S2.

    Article  Google Scholar 

  4. Chen, G., Wang, X., & Li, X. (2014). Fundamentals of complex networks. Models, structures and dynamics. Chichester, UK: Wiley.

    Google Scholar 

  5. De, P., & Das, S. K. (2009). Epidemic models, algorithms, and protocols in wireless sensor and Ad Hoc networks. In A. Boukerche (Ed.), Algorithms and protocols for wireless sensor networks (pp. 51–75). Hoboken, NJ: Wiley.

    Google Scholar 

  6. Dietz, K., & Heesterbeek, A. P. (2000). Bernoulli was ahead of modern epidemiology. Nature, 408, 513–514.

    Article  Google Scholar 

  7. Feng, L., Song, L., Zhao, Q., & Wang, H. (2015). Modeling and stability analysis of worm propagation in wireless sensor networks. Mathematical Problems in Engineering, 2015, Article ID 129598.

    Google Scholar 

  8. Fu, X., Small, M., & Chen, G. (2015). Propagation dynamics on complex networks. Models, methods and stability analysis. Singapore: Wiley.

    MATH  Google Scholar 

  9. de Fuentes, J. M., González-Manzano, L., & Mirzaei, O. (2016). Privacy models in wireless sensor networks: A survey. Journal of Sensors, 2016, Article ID 4082084.

    Google Scholar 

  10. Grassly, N. C., & Fraser, C. (2008). Mathematical models of infectious disease transmission. Nature Reviews-Microbiology, 6, 477–487.

    Google Scholar 

  11. Gross J. L., & Yellen, J. (Eds.). (2004). Handbook of graph theory. Boca Raton, FL: CRC Press.

    Google Scholar 

  12. Hammer, W. H. (1906). Epidemic disease in England. Lancet, I, 733–754.

    Google Scholar 

  13. Hethcote, W. H. (2000). The mathematics of infectious diseases. SIAM Review, 42, 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  14. IEEE Computer Society. (2012). IEEE 802.15.4e-2012, IEEE Standard for local and metropolitan area networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer.

    Google Scholar 

  15. IEEE Computer Society. (2012). IEEE Std 802.11TM-2012, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

    Google Scholar 

  16. International Electrotechnical Commission: White Paper. Internet of Things: Wireless Sensor Network (2014).

    Google Scholar 

  17. Karyotis, V., & Khouzani, M. H. R. (2016). Malware diffusion models for modern complex networks. Theory and applications. Cambridge, CA: Morgan Kaufmann.

    Google Scholar 

  18. Keeling, M. J., & Danon, L. (2009). Mathematical modelling of infectious diseases. British Medical Bulletin, 92, 33–42.

    Article  Google Scholar 

  19. Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A, 115, 700–721.

    Google Scholar 

  20. Khayam, S. S., & Rahha, H. (2006). Using signal processing techniques to model worm propagation over wireless sensor networks. IEEE Signal Processing Magazine, 23, 164–169.

    Article  Google Scholar 

  21. Li, Q., Zhang, B., Cui, L., Fan, Z., & Athanasios, V. V. (2014). Epidemics on small worlds of tree-based wireless sensor networks. Journal of Systems Science and Complexity, 27, 1095–1120.

    Article  MathSciNet  MATH  Google Scholar 

  22. López, J., & Zhou, J. (2008). Wireless sensor network security. Amsterdam: IOS Press.

    Google Scholar 

  23. Martín del Rey, A., Hernández Guillén, J. D., & Rodríguez Sánchez, G. (2016). A SCIRS model for malware propagation in wireless networks. In E. Corchado, et al. (Eds.), Advances intelligence systems and computation (Vol. 527, pp. 538–547). Berlin: Springer.

    Google Scholar 

  24. Martín del Rey, A., Hernández Guillén, J. D., & Rodríguez Sánchez, G. (2016). Modeling malware propagation in wireless sensor networks with individual-based models. In E. Corchado, et al. (Eds.), Advances in artificial intelligence. Lecture Notes in Artificial Intelligence (Vol. 9868, pp. 194–203). Berlin: Springer.

    Google Scholar 

  25. Martín del Rey, A., Hernández Encinas, A., Hernández Guillén, J. D., Martín Vaquero, J., Queiruga Dios, A., & Rodríguez Sánchez, G. (2016). An individual-based model for malware propagation in wireless sensor networks. In S. Omatu (Ed.), Advances in intelligence systems and computation (Vol. 474, pp. 223–230). Berlin: Springer.

    Google Scholar 

  26. Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37, 4103–4111.

    Article  MathSciNet  MATH  Google Scholar 

  27. Obaidat, M. S., & Misra, S. (2014). Principles of wireless sensor networks. Cambridge: Cambridge University Press.

    Google Scholar 

  28. Peng, S., Yu, S., & Yang, A. (2014). Smartphone malware and its propagation modeling: A survey. IEEE Communications Surveys & Tutorials, 16, 925–941.

    Article  Google Scholar 

  29. Ping, S. X., & Rong, S. J. Y. (2011). A malware propagation model in wireless sensor networks with cluster structure of GAF. Telecommunication Systems Journal, 27, 33–38.

    Google Scholar 

  30. Queiruga-Dios, A., Hernández Encinas, A., Martín-Vaquero, J., & Hernández Encinas, L. (2016). Malware propagation in wireless sensor networks: A review. In E. Corchado, et al. (Eds.), Advances in intelligence systems and computing (Vol. 527, pp. 648–657). Berlin: Springer.

    Google Scholar 

  31. Ross, R. (1911). The prevention of malaria (2nd ed.). London: Murray.

    Google Scholar 

  32. Vasilakos, V. J. (2012). Dynamics in small world of tree topologies of wireless sensor networks. Journal of Systems Engineering and Electronics, 23, 325–334.

    Article  Google Scholar 

  33. Zhang, Z., & Si, F. (2014). Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Advances in Differential Equations, 2014, 1–18.

    Article  Google Scholar 

  34. Zhu, L., & Zhao, H. (2015). Dynamical analysis and optimal control for a malware propagation model in an information network. Neurocomputing, 149, 1370–1386.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable suggestions and comments. This work has been supported by Ministerio de Economía y Competitividad (Spain) and the European Union through FEDER funds under grants TIN2014-55325-C2-1-R, TIN2014-55325-C2-2-R, and MTM2015-69138-REDT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martín del Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

del Rey, A.M., Peinado, A. (2018). Mathematical Models for Malware Propagation in Wireless Sensor Networks: An Analysis. In: Daimi, K. (eds) Computer and Network Security Essentials. Springer, Cham. https://doi.org/10.1007/978-3-319-58424-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58424-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58423-2

  • Online ISBN: 978-3-319-58424-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics