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Abstract. armasuisse Science and Technology, the R&D agency for the
Swiss Armed Forces, is developing a Social Media Analysis (SMA) sys-
tem to help detect events such as natural disasters and terrorist activity
by analysing Twitter posts. The system currently supports only keyword
search, which cannot identify complex events such as ‘politician dying’ or
‘militia terror act’ since the keywords that correctly identify such events
are typically unknown. In this paper we present ArmaTweet, an exten-
sion of SMA developed in a collaboration between armasuisse and the
Universities of Fribourg and Oxford that supports semantic event detec-
tion. Our system extracts a structured representation from the tweets’
text using NLP technology, which it then integrates with DBpedia and
WordNet in an RDF knowledge graph. Security analysts can thus de-
scribe the events of interest precisely and declaratively using SPARQL
queries over the graph. Our experiments show that ArmaTweet can detect
many complex events that cannot be detected by keywords alone.

1 Introduction

Twittelﬂ is a popular microblogging service. As of late 2016, an estimated 317
million users produce around 500 million messages (or tweets) per day that are
broadcast to the users’ followers. Tweets contain up to 140 characters and cover
almost any topic, including personal messages and opinions, celebrity gossip,
entertainment, news, and more. Current events are widely discussed on Twitter;
for example, around 1.7 M tweets were sent on 7,/1/2015 in response to the Char-
lie Hebdo attacks in Paris. Twitter users often provide live updates in critical
situations; for example, users tweeted ‘In Brussels Airport. Been evacuated afer
[sic] suspected bomb.” and ‘Stampede now. Everyone running’ during the attack
at the Brussels airport on 22/3/2016. Most tweets can be read by unregistered
users, so Twitter can potentially provide a real-time source of information for
detecting newsworthy events before the conventional broadcast media channels.
Thus, the development of techniques for tweet analysis and event detection has
attracted considerable attention. The Natural Language Processing (NLP) com-
munity adapted their techniques to tweets [17,[23,/9], which are short and often
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use a colloquial style with nonstandard acronyms, slang, and typos. These tools
were used to develop numerous approaches to event detection on Twitter, and
we survey the NLP tools and the event detection approaches in Section [2

Based on these results, armasuisse Science and Technology—the R&D agency
of the Swiss Armed Forces—is developing a Social Media Analysis (SMA) system,
which aims to help security analysts detect security-related events. Similarly to
previous work [2[15], analysts currently describe the relevant events using key-
words, which are evaluated over tweets using standard Information Retrieval (IR)
techniques. This approach, however, cannot detect events with complex descrip-
tions. For example, to detect deaths of politicians, an analyst might query the
SME system using keywords ‘politician die’, but this results in both low precision
and low recall. For example, the system misses the death of Edward Brooke (the
first African American US senator) since, instead of the word ‘politician’, most
tweets about this event contain phrases such as ‘the senator’ or ‘elected to the
US Senate’; similarly, the word ‘die’ is very frequent on Twitter and so the query
retrieves mostly irrelevant tweets. To reliably detect such events, one must un-
derstand the intended meaning of the query, know which people are politicians,
and identify tweets that mention such a person as a subject of a verb ‘to die’.
Similarly, to match a query for ‘militia terror act’ to an attack of Boko Haram
on a village in Nigeria, one must know that Boko Haram is a militia group and
that terror acts include kidnappings and bombings.

In this paper we present ArmaTweet—an extension of SMA to semantic event
detection developed in a collaboration between armasuisse and the Universities
of Fribourg and Oxford. Our system uses NLP technique to extract a structured
representation from tweets and integrate it with DBpedia and WordNet in an
RDF knowledge graph. Users can thus describe relevant event categories by
using semantic queries over the knowledge graph. The system evaluates these
queries using semantic technologies to retrieve the relevant tweets and passes
them to an anomaly detection algorithm to determine whether and how they
correspond to actual events. We evaluated our system on the 1%-sample of tweets
collected by the Twitter’s streaming API during the first six months of 2015. The
system detected a total of 941 events across seven different event categories. We
evaluated our results using three different definitions of which tweets should be
considered relevant to the query. Depending on the selected relevance metric,
our system achieved precision between 46% and 67% across all categories. Most
of these events could not be detected by the previous version of the system,
showing clearly how our approach complements standard keyword search.

2 Related Work

Although analysing tweets is very challenging, initiatives such as the Named
Entity rEcognition and Linking (NEEL) Challenge have spurred on the NLP
community to develop a comprehensive set of tools including Part-of-Speech
(POS) taggers |17], Named Entity Recognisers [22,[5], and dependency parsers
[9]. To understand the syntactic structure of tweets, our system must identify



dependencies between terms (e.g., identify the subject of a given verb, determine
grammatical cases, and so on). We do not know of a Twitter-specific system that
provides such functionality, so decided to use the Stanford CoreNLP library [14]
that was originally designed to analyse cleaner text.

A recent survey of the methods for event detection on Twitter |7] classifies
existing approaches into three groups. The first one contains approaches for de-
tecting unspecified events—that is, events of general interest with no advance
description. These approaches typically detect trends in features extracted from
tweets and/or cluster tweets based on their topic [3|[13,29]. Several systems detect
breaking news [26}/19,/18], and one additionally classifies events into predefined
types such as ‘Sports’, ‘Death’, or ‘Fashion’ [23]|. Some approaches use proba-
bilistic similarity instead of clustering [31]. Analogously to these approaches, we
also identify events by detecting trends, but only after semantic queries have
been used to identify the tweets matching the user’s interests (see Section .

The second group contains approaches for detecting predetermined events,
such as concerts [4], controversial events [20], local festivals [10], earthquakes |25],
crime and disaster events [12], and disease progression [27]. Such systems are
specifically tailored to an event type, and they usually involve training a classifier
on manually annotated tweets to learn the correlation of features that identifies
tweets talking about an event. The EMBERS system [21] goes a step further by
aggregating many sources of information (Twitter, Web searches, news, blogs,
Internet traffic, and so on) to detect and predict instances of civil unrest.

The third group contains approaches for detecting specific events, which typi-
cally use IR methods to match a query (i.e., a Boolean combination of keywords)
to a database of tweets. Queries are either provided by the users or are learned
from the context |2|, and recall can be improved by query expansion [15]. These
techniques have been combined with geographical proximity analysis to detect
civil unrest [30] and model events in Twitter streams [8]. ArmaTweet also identi-
fies tweets using queries provided by users and thus, broadly speaking, falls into
this category; however, instead of keyword queries, it uses semantic queries de-
scribing the relationships between entities in tweets. The system thus supports
queries for specific events (e.g., ‘Obama meets Trump’) that can be captured
using keywords, as well as more complex queries specifying an event type (e.g.,
‘somebody hacks a company’) for which a keyword-based approach is not effec-
tive. Our system does not rely on a training phase, but requires users to specify
their interests precisely by constructing semantic queries. An approach most
similar to ours constructs a knowledge graph of events from news articles [24],
and the main difference to our work is that it focuses on longer, cleaner texts.

3 DMotivation & Methodology

Motivation. Detecting Twitter events using complex descriptions (e.g., based
on entities’ classes or their relationships) is still very challenging. Consider, for
example, the ‘politician dying’ description from the introduction, and the death
of Edward Brooke on 3/1/2015. The event has been widely discussed on Twitter,



and running the keyword query ‘edward brooke’ for that day in SMA returns
121 tweets. This, however, is just a tiny fraction of all tweets produced on that
day, and so this event is unlikely to be detected by the techniques for unspecified
events (see Section [2); for example, the technique by Ritter et al. [23] detected
just five completely unrelated events on that dayE| Moreover, there are no obvious
keyword queries: ‘die’ returns 5161 mostly irrelevant tweets in SMA, ‘politician’
returns 46 irrelevant tweets, and ‘politician die’ and ‘senator die’ return no results
(note that SMA uses just 1% of all tweets). Thus, although ‘edward brooke’ is
an effective query, it is unclear how to construct it from description ‘politician
dying’. Similarly, it is unclear how to exploit classification-based techniques since
common features, such as n-grams or bags of words, are unlikely to reflect the
semantic information that Edward Brooke was a politician. Other examples of
complex events that we consider in this paper include ‘politician visits a country’,
‘militia terror act’, or ‘capital punishment by country’.

Approach. Since the objective of armasuisse was to detect events with com-
plex descriptions, we depart from statistical and IR approaches and use semantic
search instead. In particular, we use natural language processing to associate each
tweet with a set of quads of the form (subject, predicate, object, location), describ-
ing who did what to whom and where; any of these components can be empty,
which we denote by x. We also associate with each tweet a set of entities whose
role (subject or object) in the tweet could not be determined. Subjects, objects,
locations, and entities are matched to DBpedia [11], a knowledge base extracted
from Wikipedia, and predicates are matched to verb synsets in WordNet [16],
an extensive lexicon. Thus, DBpedia and WordNet provide us with a vocab-
ulary and background knowledge for describing complex events. For example,
tweets about the death of Edward Brooke are associated with quads of the form
(dbr:Edward_Brooke,wnr:200359085-v, X , X), where wnr:200359085-v iden-
tifies the synset ‘to die’ in WordNet, and DBpedia classifies dbr : Edward_Brooke
as an instance of yago:Politician110451263. Our simple quad model cannot
represent semantic relationships such as appositions, adverbs, dependent clauses,
modalities, or causality. While such relationships would clearly be useful, our
evaluation (see Section|7]) demonstrates that our model is sufficient for detecting
many kinds of complex event that cannot be detected using keywords only.

Semantic Event Descriptions. To use ArmaTweet, users must first describe
formally the events of interest. To facilitate that, the system provides an in-
tuitive and declarative query interface that allows users to query quads in our
knowledge graph while exploiting the background knowledge from DBpedia and
WordNet. For example, ‘politician dying’ events can be precisely described by a
query that identifies all quads in our knowledge graph whose subject is of type
yago:Politician110451263, and whose predicate is wnr:200359085-v. As we
discuss in Section [B] such queries are matched to the knowledge graph in a way
that attempts to compensate for the imprecision of natural language analysis.
Queries are currently constructed manually, which allows users to precisely de-
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Fig. 1. ArmaTweet Architecture

scribe their information needs. In our future work we shall investigate techniques
that can automate, or at least provide some help with, query construction.

System Output. Given a set of tweets and a set of queries describing complex
events, ArmaTweet produces a list of events, each consisting of an event date, an
event summary, and a set of relevant tweets. The event summary is specific to
the event type; for example, for ‘politician dying’, it identifies the politician in
question, and for ‘militia terror act’, it identifies the militia group and the verb
describing the act. Finally, the set of relevant tweets allows the user to validate
the system’s output, gain additional information, and possibly initiate an appro-
priate event response. The system currently does not detect long-running events
(e.g., political turmoil or health crises)—that is, each event is associated with
a single day only. Thus, the same real-world event can be reported as several
events having the same summary but occurring on distinct days. Longer-running
events are often reported as events with the same summary occurring in close
succession, and we shall investigate ways to exploit this in our future work.

System Architecture. Figure[l|shows the architecture of ArmaTweet and its
three main components. The Natural Language Processing component analyses
the tweets’ text and extracts the quads and entities, and it is independent of
the complex event descriptions. The Semantic Analysis component converts the
output of the NLP step into RDF, which is then analysed and filtered using
the user’s event descriptions. The output of this component is a set of tweet
time series, each consisting of a summary and a set of tweets. Finally, the Fvent
Detection component uses an anomaly detection algorithm to extract from each
time series zero or more dates that correspond to the actual events. The resulting
events and their summaries are finally reported to the user.

To understand the conceptual difference between time series and events, con-
sider the ‘militia terror act’ event query. Our Semantic Analysis component pro-
duces one time series with subject ‘Boko Haram’ and predicate ‘to attack’, which
contains all tweets talking about attacks by Boko Haram regardless of the time of
the tweets. Next, the Event Detection component groups the tweets by time and
detects anomalies (e.g., abrupt changes in the number of tweets per day). Since
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Boko Haram committed several attacks in our test period, our system extracts
and reports several events from this particular tweet time series.

Our NLP processing is computationally intensive, but it is massively parallel
since each tweet can be processed independently; hence, we parallelised it using
Apache Spark. Moreover, we used the state of the art semantic store RDFOXEI
to manage and process our knowledge graph. The parts of our system that are
independent from the Spark environment (i.e., the core of the NLP component
and the queries/rules used for semantic analysis) are available online[]

4 Natural Language Processing of Tweets

The NLP component of ArmaTweet extracts from tweets in English a set of
quads consisting of a subject, predicate, object, and location, and a set of entities
that cannot be assigned to a quad. Predicates are matched to verb synsets in
WordNet, and the remaining components are matched to DBpedia resources.

Data Preparation. For each tweet, we first prepare certain data structures.
Specifically, we first clean the text by removing emoticons and uncommon char-
acters, we substitute # and @ characters with whitespace, and we split Camel-
Case words. Next, the OpenlE annotator from the Stanford CoreNLP library [1]
transforms the text into text triples consisting of a subject, a predicate, and an
object; the name ‘text triples’ emphasises that the components are pieces of text,
and not DBpedia or WordNet resources. OpenlE also annotates the mentions of
named entities (i.e., objects with a proper name) with the entity types (location,
organisation, or person); it annotates the text with part-of-speech (POS) tags,
which describe the relation of a word with adjacent or related words; and it
produces a (dependency-based) parse tree, which represents the syntactic depen-
dencies between sentence parts using labelled edges between words.

Figure [2] shows the output of OpenlE on two example tweets. The tweet
text is shown in bold. Named entity types are coded using colours: the locations
‘Hawija’ and ‘White House’ are shown in green, the organisation ‘ISIS’ is shown
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in blue, and the persons ‘Obama’ and ‘Trump’ are shown in yellow. The POS tags
are shown in italic below the words: ‘Hawija’ is a singular proper noun (NNP),
‘was’ is a verb in past tense (VBD), and ‘again’ is an adverb (RB). Finally, the
parse trees are shown as labelled arrows connecting words. The roots of the trees
are words without incoming edges—‘bombed’ and ‘met’ in this case. Moreover, in
the rightmost tree, ‘Obama’ is the subject of the verb ‘met’ (denoted by a nsubj
dependency), while ‘Trump’ is its direct object (denoted by a dobj dependency).
Finally, the text triples are shown at the bottom of the figure.

Our NLP component also passes the text to DBpedia Spotlight [6], which
identifies entity mentions in the text and associates with each mention an ap-
propriate DBpedia resource. For example, on the example shown in Figure [2]
Spotlight annotates ‘Hawija’ with dbr:Hawija, ‘ISIS’ with dbr: ISISE| ‘Obama’
with dbr:Barack_0Obama, ‘Trump’ with dbr:Donald_Trump, and ‘White House’
with dbr:White_House. We chose Spotlight due to its scalability and ease of use.
Spotlight is parameterised by a confidence value that regulates the precision of
annotation, and a support value used to filter out uncommon entities, and we
empirically determined 0.5 and 20, respectively, as values appropriate for our
system. Please note that this step is complementary to the named entity recog-
nition of OpenlE: Spotlight provides us with links to DBpedia, whereas OpenlE
provides us with high-level entity categories that we use for text analysis.

Location Extraction. We next try to identify the location of the action in
text triples by observing that words introducing a grammatical case in a sentence
that are connected to a location often describe the verb’s spatial location. Thus,
we first extend each text triple into a text quad by specifying the location as
unknown. Next, for each text quad where the object is a location (as indicated
by entity recognition), we check whether the parse tree contains a grammatical
case dependency between a word occurring in the quad’s predicate and a word
occurring in its object; if so, we move the quad’s object to its location. For exam-
ple, the object of (‘Obama’, ‘met Trump in’, ‘White House’) in Figurehas been
classified as a location, and the parse tree contains a grammatical case depen-
dency between the word ‘House’ occurring in the object and the preposition ‘in’
occurring in the predicate, and so we treat “White House’ as a location instead
of an object. Please note that a location in the subject often does not specify the
location of an action; for example, the subject of the sentence ‘Oxford is a city’ is
a location, but ‘Oxford’ should not be used as a location in a quad since it does
not describe the location of an action. We found no clear dependency pattern
that could distinguish such cases and reliably extract location from subjects.

Passive Voice Correction. Passive voice can be problematical; for example,
in (‘Hawija’, ‘was bombed by’, ‘ISIS’) from Figure ‘Hawija’ is the subject and
‘ISIS’ is the object, which does not correctly reflect the intended meaning of
the tweet. To correct such situations, for each text quad, we check whether the
predicate contains a word that was classified by the POS tagger as a verb and
that has (i) an outgoing passive auziliary modifier dependency (to any other

8 We abbreviate the actual resource dbr:Islamic_State_of_Iraq_and_the_Levant.



word), (ii) a passive subject dependency to a word occurring in the subject, and
(iii) an agent dependency to a word occurring in the object; if so, we swap the
subject and the object. In our example, ‘was’ is an auxiliary modifier, ‘ISIS’ is
an agent, and ‘Hawija’ is a passive subject’, so we apply the correction.

Entity Resolution. We next match the subject, object, and location of each
text quad to the annotations of Spotlight. In case of an exact match we replace
the component with the DBpedia resource, and otherwise we replace it with x.

Verb Resolution. Since Spotlight does not handle verbs, we developed our
own approach to verb resolution. First, we identify all verb occurrences in a tweet
using POS tags. Next, we lemmatise each verb occurrence—that is, we substitute
it with the verb’s infinitive form (e.g., ‘met’ becomes ‘to meet’, ‘bombed’ becomes
‘to bomb’, and so on)—and then we search the tweet’s parse tree for any phrasal
verb particles connected to the verb’s occurrence. Such a dependency indicates
that the verb and the particle form an idiomatic phrase (e.g., ‘take off” or ‘sort
out’) and should be analysed together, so, whenever we find one, we concatenate
the verb with the phrasal verb particle. We finally match the (possibly extended)
verb occurrence to a WordNet synset; if several candidate synsets exist, we select
the one that is most frequent according to the WordNet’s statistics. The output
of this part of our system is thus similar to that of Spotlight.

Finally, we resolve the predicates in the quads to the matched verbs. Unlike
entities, which we resolved using exact matches, we substitute the predicate of
a quad with a matched verb if the former contains the latter. This allows us
to match ‘was bombed by’ in Figure [2| to the synset for ‘to bomb’. Again, we
replace predicates that could not be resolved with x.

Quad Output. For each tweet, we return all quads except those containing
only x markers. In addition, for each verb that was resolved to the tweet’s text
but could not be associated with a quad, we also return a fresh quad where the
subject, object, and location are empty. Finally, we return the set of all entities
that were detected by Spotlight but could not be matched to a quad.

5 Semantic Analysis

The Semantic Analysis component of ArmaTweet integrates DBpedia, WordNet,
and the quads in a knowledge graph, and it evaluates complex event descriptions
provided by the users. We next discuss the structure of the knowledge graph and
the event descriptions, and we describe how we identify the tweet time series.

5.1 The RDF Knowledge Graph for Event Detection

We use RDF as the data model for the knowledge graph. Thus, the RDF ver-
sions of DBpedia and WordNet can be imported directly, and we encode tweet
information using a simple schema. Each tweet is identified by a URI obtained
from the tweet’s ID; it is an instance of the aso:Tweet class; and data properties
aso:createdAt and aso:tweetText specify the time of the tweet’s creation and
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its text, respectively. A tweet can be associated with zero or more quads, each
with at most one aso:quadSubject, aso:quadPredicate, aso:quad0bject, and
aso:quadLocation property value. Finally, a tweet can be associated with zero
or more entities whose role in a sentence could not be determined (see Section.
Figure [3] shows the tweet ast:551507074258325504 with two quads: one
connects dbr:Edward_Brooke from DBpedia with the WordNet synset ‘to die’,
and another connects dbr : Edward_Brooke with dbr:Reconstruction_Era (due
to the imprecision of NLP analysis). Finally, the tweet is also directly associated
with dbr:Birmingham, whose role in the sentence could not be determined.
The time series detected by Semantic Analysis component, each consisting of
a summary and a set of tweets, are also stored in the knowledge graph. For ex-
ample, _:ts-sp_4344996_1855965 in Figure |§| is a tweet time series containing
all tweets about Edward Brooke dying, and the Event Detection component (cf.
Section @ will extract from it zero or more events. Our system currently does
not take into account that a person can die only once, and so it can potentially
report multiple ‘Edward Brooke dies’ events. Each time series is classified ac-
cording to the type of the summary information; currently, this includes subject—
predicate (SP), predicate—object (PO), subject—country (SC), predicate—country
(PC), and subject—predicate—country (SPC) time series. For example, the time
series in Figure |3| is determined by a subject and a verb, and so it belongs to
the aso:TimeSeries-SP class and the values of aso:timeSeriesSubject and
aso:timeSeriesPredicate determine the time series summary.

5.2 Resolving Location in the Knowledge Graph

We observed that the granularity of the event location often varies between
tweets; for example, tweets about the Charlie Hebdo attacks refer both to France



and Paris. To simplify event detection, we decided to aggregate event information
at the country level. Thus, we extend the knowledge graph by resolving references
to locations mentioned in tweets to the corresponding countries. For example, the
tweet shown in Figure [3| refers to dbr:Birmingham so, since DBpedia contains
the information that Birmingham is a city in the UK, we associate the tweet
with dbr:United_Kingdom using the aso:tweetCountry property. Entities in
tweet quads are resolved to countries in a similar vein.

5.3 Describing Complex Events and Extracting Time Series

Events of interest are described using conjunctive SPARQL queries that select
the relevant quads. For example, queries and describe the ‘politician
dying’ and the ‘unrest in a country’ events, respectively, where aso:UnrestVerb
contains all verbs from WordNet that we identified as indicating unrest. The
answer variables of each query determine the time series summary.

SELECT 7S wnr:200359085-v WHERE { ?Q aso:quadPredicate wnr:200359085-v . (1>
?Q aso:quadSubject ?S . ?S rdf:type yago:Politician110451263 }

SELECT 7P ?C { 7Q aso:quadCountry 7C . (2)
?7Q aso:quadPredicate 7P . ?P rdf:type aso:UnrestVerb }

We next explain why querying quads is important. In particular, tweets of-
ten mention a politician and the verb ‘to die’, but not in a desired semantic
relationship. For example, tweet ast:551766588421312512 (not shown in Fig-
ure [3) says ‘@BarackObama @pmharper I'm just trying to get some realization,
is school supposed to cause you so much stress&anxiety that you want to die?’
and it is annotated with dbr:Barack_0Obama and wnr:200359085-v, but, as one
might expect from the text, there is no quad connecting the two resources. The
lack of a semantic relationship, however, does not always indicate that a tweet
is irrelevant to the event query. For example, tweet ast:555598764589977600
(not shown in Figure [3) says ‘Edward Brooke, first black US senator elected
by popular vote, dies - Reuters’, and it is annotated with dbr:Edward_Brooke
and wnr:200359085-v, but, due to the complex sentence structure, the NLP
component could not identify the semantic relationship correctly. In fact, our
knowledge graph contains 44 tweets with quads matching ‘Edward Brooke dies’,
as well as 111 additional tweets without the semantic relationship.

To exploit the knowledge graph as much as possible but without losing pre-
cision, our system proceeds as follows. It creates a tweet time series for each
distinct result of a quad query (or, equivalently, for each distinct time series
summary), to which it adds as ‘high confidence’ members all tweets contain-
ing a matching quad. Next, for each time series created in this way, the system
adds to the time series as ‘low confidence’ members all tweets mentioning the
relevant entities/predicates without the semantic relationship. For example, our
system creates a time series for each distinct value of ?S produced by query
(1), and this includes _:ts-sp_4344996_1855965 from Figure [3| that contains
tweets ast:551507074258325504 and ast:555598764589977600 as ‘high’ and
‘low confidence’ members, respectively. In contrast, no time series is created for



dbr:Barack_0Obama since our knowledge graph does not contain a quad match-
ing query where 7S is dbr:Barack_0Obama. Intuitively, the presence of ‘high
confidence’ tweets raises the importance of the ‘low confidence’ tweets, which
helps compensate for the imprecision of the NLP analysis.

The Semantic Analysis component was realised using the RDFox system,
which supports reasoning over RDF datasets using datalog rules. For each time
series query, the user must provide the time series name and classify the query
according to the summary type, and then the query is converted into a data-
log rule that creates the tweet time series and identifies the ‘high confidence’
tweets. For example, query is named aso:PoliticianDying and classified as
a subject—predicate query, and so it is converted into the following datalog rule:

[?TS, rdf:type, aso:PoliticianDying], [?TS, aso:timeSeriesSubject, 7S],

[?TS, aso:timeSeriesVerb, wnr:200359085-v], [?TS, aso:timeSeriesHigh, ?TW] :-
[?TW, aso:tweetQuad, ?Q], [7Q, aso:quadSubject, 7S], (3)
[?S, rdf:type, yago:Politician110451263], [7Q, aso:quadPredicate, wnr:200359085-v],
BIND(SKOLEM("ts-sp", 7S, wnr:200359085-v) AS ?7TS) .

This rule uses the datalog syntax of RDFox, which supports calling SPARQL
builtin functions in its body. The SKOLEM function is an RDFox-specific extension
that creates a blank node uniquely determined by the function’s parameters, thus
simulating function symbols from logic programming. Thus, for each value of 78,
rule assigns to ?TS a unique blank node that identifies the time series, and its
head atoms then attach to ?TS the relevant information and the ‘high confidence’
tweets. A fixed (i.e., independent from the queries) set of rules then identifies the
‘low confidence’ members of each time series by selecting tweets that mention
all entities/predicates from the time series summary, but without the semantic
relationship. For example, for subject—predicate time series, these rules select all
tweets that mention the subject and the predicate outside a quad.

6 Event Detection

The Event Detection component accepts as input the tweet time series produced
by the Semantic Analysis component, and it identifies zero or more associated
events. This is done using the Seasonal Hybrid ESD (S-H-ESD) test [28] devel-
oped specifically for detecting anomalies in Twitter data. The algorithm is given
a real number p between 0 and 1, a set of time points 7', and a real-valued func-
tion z : T — R that can be seen as a sequence of observations of some value on T'
where z(t) is the value observed at time ¢ € T'. The algorithm identifies a subset
T, of T of time points at which the value of z is considered to be anomalous,
while ensuring that |T,| < p - |T| holds; thus, p is the maximal proportion of the
time points that can be deemed anomalous. Roughly speaking, the S-H-ESD test
first determines the periodicity /seasonality of the input data; next, it splits the
data into disjoint windows each containing at least two weeks of data; finally,
for each window, it subtracts from = the seasonal and the median component
and applies to the result the Extreme Student Derivative (ESD) test—a well-
known anomaly detection technique. Twitter is currently using this technique



Table 1. Evaluation Results by Event Category

Total Positive Instances by Relevance

Event Category Type Events R3 R3+R2 R3-R1

Aviation accident SP 84 44 (52%) 51 (61%) 64 (76%)
Cyber attack on a company PO 129 20 (16%) 42 (33%) 5 (44%)
Capital punishment in a country PC 153 47 (31%) 67 (44%) 2 (60%)
Militia terror act SP 220 92 (42%) 125 (57%) 141 (64%)
Politician dying Sp 111 76 (68%) 80 (12%) 85 (77%)
Politician visits a country SPC 44 29 (66%) 36 (82%) 44 (100%)
Unrest in a country PC 200 125 (63%) 133 (67%) 148 (74%)
Total: 041 433 (46%) 534 (57%) 631 (67%)

on a daily basis to analyse their server load. ArmaTweet uses the open-source
implementation of this test from the R statistical platformEI

To apply the S-H-ESD test, each tweet time series is converted into a sequence
of temporal observations by aggregating the tweets by day—that is, the set T’
corresponds to the set of all days with at least one tweet, and the value of x(t)
is the number of (both ‘high’ and ‘low confidence’) tweets occurring on the day
t € T. We then run the S-H-ESD test with p = 0.05—that is, at most 5% of the
time points can be deemed anomalous. Moreover, we configured the algorithm
to detect only positive anomalies (i.e., cases where the number of tweets is above
the expected value), which is natural for event detection.

7 Evaluation

Evaluating ArmaTweet was difficult since there is no ground truth: a list of all rel-
evant events does not exist, so we could not determine the recall of our technique.
Thus, we focused on determining the precision and the benefits of semantic event
detection. We next present our experimental setup and discuss our findings.
We processed 195.7 M tweets in English collected in the first half of 2015
using Twitter’s streaming API (which returns about 1% of all tweets). The NLP
component extracted 14.5 M quads from 12.8 M tweets (i.e., 6% of the input).
Most quads have two components: 6.2 M quads contain a predicate and an object,
and 5 M quads contain a subject and a predicate; the remaining 0.7 M quads
have three components, and no quads have four components. About 0.5 M quads
contain location information. Integrating the quad information with DBpedia
and WordNet produced a knowledge graph containing a total of 725.8 M triples,
which increased to 800 M triples after applying the semantic analysis rules.

Determining Complex Events. We consulted the Wikipedia page for 201@
to identify interesting concrete events, which provided us with a starting point

9 |http://github.com /twitter / AnomalyDetection
10 http: //en.wikipedia.org/wiki/2015
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for a series of workshops in which we identified events and event types of interest
to armasuisse customers. We eventually settled on the seven complex event cat-
egories shown in Table[I] We made sure that our categories cover many different
types of event summary (i.e., subject—verb, verb—object, etc.).

Creating Category Queries. For each event category, we constructed a se-
mantic query as follows. We first identified the entities from our example events
on Wikipedia (e.g., dbr:Edward_Brooke), which we then looked up in DBpedia
to identify their types (e.g., yago:Politician110451263). Next, we queried our
knowledge graph for the verbs occurring together with the sample entities in the
tweets. We ranked these verbs by the frequency of their occurrence, and then
selected those best matching the event category. Finally, we formulated the cat-
egory query and tested it on example events. Most queries capture the meaning
of the categories directly, apart from the ‘Aviation incident’ query where, to se-
lect useful data, we ask for a subject of type ‘airline’ and a verb indicating a
crash. Creating the queries took about four person-days of an expert in semantic
technologies, and optimising this process is the main topic for our future work.

Event Validation. By evaluating the event categories over the knowledge
graph and detective events as discussed Sections [§ and [6] we identified a total of
941 events (see Table , which we validated manually—that is, we determined
whether the reported event is a positive instance. This, however, turned out to be
surprisingly challenging. First, we could often not verify whether the event really
happened, so we decided to just evaluate whether the retrieved tweets correctly
talk about the event; we justify this choice by noting that detecting ‘invented’
events could also be very important to security analysts. Second, some events
happened in the past (e.g., the anniversary of Robert Kennedy’s assassination
was widely discussed on Twitter), but we decided to count these as positive
instances as well since they are also likely to be of interest. Third, in some cases
the retrieved events were only partially relevant to the query, and so we assigned
each event one of the following three relevance scores:

— R3 are clear positive instances of the category in question;

— R2 are positive instances where the entity resolution (e.g., dbr:British_Raj
vs. dbr:India) or the subject—object relationships (e.g., ‘ISIS attacked X’
vs. ‘X attacked ISIS’) in the event summary are incorrect;

— RI are events with a ‘fuzzy’ relationship to the category (e.g., ‘ISIS kills X’
or ‘policeman killed’ for the ‘Unrest in a country’ category); and

— RO are events with no relevance to the event category.

Results. Table [I| shows the total number of detected events per category and
the numbers of positive instances for different relevance scores. As one can see,
precision varies considerably across categories. Visits and deaths of politicians
could be reliably detected: our NLP component seems very effective on the rele-
vant tweets, and type filtering seems very effective at identifying the appropriate
entities. In contrast, detecting cyber attacks is difficult: our query searches for
‘company hacked’, but the verb ‘to hack’ often means ‘to cut’ or ‘to manage’ so
the query retrieved many irrelevant tweets (e.g., about a blogger being stabbed).



A particular problem for ArmaTweet was to correctly differentiate the subject
from the object of an action: the approach to passive voice detection we described
in Section [] was effective, but should be further improved. Moreover, precision
often suffered due acronyms; for example, ‘APIs’ (i.e., ‘Application Programming
Interfaces’) was resolved to ‘Associated Press’. Finally, popular entities posed a
particular problem. For example, ISIS appears in a great number of tweets, which
increases the likelihood of incorrect event recognition; in contrast, Boko Haram is
not that well known and thus seems to be mainly mentioned in tweets reporting
terrorist activity. We plan to further investigate ways to ‘normalise’ the tweet
time series based on the ‘popularity’ of the entities involved.

8 Conclusion

We have presented ArmaTweet—a system developed by armasuisse and the Uni-
versities of Fribourg and Oxford for semantic event detection on Twitter. The
system represents the tweets’ contents in an RDF knowledge graph, thus allow-
ing users to precisely describe the events of interest. The results of our evaluation
show that ArmaTweet can detect events such as ‘politician dying’ and ‘militia
terror act’, which cannot be detected by conventional keyword-based methods.
We see two main challenges for future work. First, to help users describe com-
plex events, we will develop adequate user interfaces, as well as investigate ways
to extract semantic queries from example tweets. Second, we plan to improve
the precision of the NLP component, particularly focusing on the correction of
passive voice and the quality of entity resolution in the presence of acronyms.
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