Abstract
Team recommendation is a key and little-explored aspect within the area of business process management. The efficiency with which the team is conformed may influence the success of the process execution. The formation of work teams is often done manually, without a comparative analysis based on multiple criteria between the individual performance of the resources and their collective performance in different teams. In this article, we present a multi-criteria framework to allocate work teams dynamically. The framework considers four elements: (i) a resource request characterization, (ii) historical information on the process execution and expertise information, (iii) different metrics which calculate the suitability of the work teams taking into account both individual performance as well as collective performance of the resources, and (iv) a recommender system based on the Best Position Algorithm (BPA2) to obtain a ranking for the recommended work teams. A software development process was used to test the usefulness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.M.P., Verbeek, H.M.W.: Process discovery and conformance checking using passages. Fundam. Inform. 131(1), 103–138 (2014)
Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for efficient top-k query processing. Inf. Syst. 36(6), 973–989 (2011)
Arias, M., Rojas, E., Munoz-Gama, J., Sepúlveda, M.: A framework for recommending resource allocation based on process mining. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 458–470. Springer, Cham (2016). doi:10.1007/978-3-319-42887-1_37
Ballesteros-Pérez, P., González-Cruz, M.C., Fernández-Diego, M.: Human resource allocation management in multiple projects using sociometric techniques. Intl. J. Project Manage. 30(8), 901–913 (2012)
Barreto, A., de Oliveira Barros, M., Werner, C.M.L.: Staffing a software project a constraint satisfaction and optimization-based approach. Comput. OR 35(10), 3073–3089 (2008)
Britto, R., de Alcântara dos Santos Neto, P., Rabelo, R.A.L., Ayala, W., Soares, T.: A hybrid approach to solve the agile team allocation problem. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, pp. 1–8 (2012)
Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Automated resource assignment in BPMN models using RACI matrices. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 56–73. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33606-5_5
Cabanillas, C., Resinas, M., Mendling, J., Cortés, A.R.: Automated team selection and compliance checking in business processes. In: Proceedings of the 2015 International Conference on Software and System Process, ICSSP, pp. 42–51 (2015)
Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. ACM Sigmod Rec. 26(1), 65–74 (1997)
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)
Gerogiannis, V.C., Rapti, E., Karageorgos, A., Fitsilis, P.: Human resource assessment in software development projects using fuzzy linguistic 2-tuples. In: Artificial Intelligence, Modelling and Simulation (AIMS), pp. 217–222. IEEE (2014)
Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based resource allocation in business process management. DKE 70(1), 127–145 (2011)
Huang, Z., Lu, X., Duan, H.: Mining association rules to support resource allocation in business process management. Expert Syst. Appl. 38(8), 9483–9490 (2011)
Kim, A., Obregon, J., Jung, J.-Y.: Constructing decision trees from process logs for performer recommendation. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 224–236. Springer, Cham (2014). doi:10.1007/978-3-319-06257-0_18
Kumar, A., Dijkman, R., Song, M.: Optimal resource assignment in workflows for maximizing cooperation. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 235–250. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40176-3_20
Li, C., Akker, J.M., Brinkkemper, S., Diepen, G.: Integrated requirement selection and scheduling for the release planning of a software product. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 93–108. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73031-6_7
Liu, X., Chen, J., Ji, Y., Yu, Y.: Q-learning algorithm for task allocation based on social relation. In: Cao, J., Wen, L., Liu, X. (eds.) PAS 2014. CCIS, vol. 495, pp. 49–58. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46170-9_5
Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)
Narendra, N.C., Ponnalagu, K., Zhou, N., Gifford, W.M.: Towards a formal model for optimal task-site allocation and effort estimation in global software development. In: 2012 Annual SRII Global Conference, pp. 470–477 (2012)
Oberweis, A., Schuster, T.: A meta-model based approach to the description of resources and skills. In: AMCIS, p. 383 (2010)
Royce, W.W.: Managing the development of large software systems. In: proceedings of IEEE WESCON, vol. 26, pp. 1–9 (1970)
Russell, N., Aalst, W.M.P., Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: identification, representation and tool support. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005). doi:10.1007/11431855_16
Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A framework for efficiently mining the organisational perspective of business processes. DSSs 89, 87–97 (2016)
e Silva, L., Costa, A.P.: Decision model for allocating human resources in information system projects. Intl. J. Proj. Manage. 31(1), 100–108 (2013)
Sommerville, I.: Software Engineering. Pearson, London (2015)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT. CoRR abs/1111.2249 (2011)
Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Wen, Z., Li, T. (eds.) Foundations of Intelligent Systems. AISC, vol. 277, pp. 701–708. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54924-3_66
Acknowledgments
This project was partially funded by the Ph.D. Scholarship Program of CONICYT Chile (Doctorado Nacional/2014-63140181), Universidad de Costa Rica and by Fondecyt (Chile) Project No.1150365.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Arias, M., Munoz-Gama, J., Sepúlveda, M. (2017). A Multi-criteria Approach for Team Recommendation. In: Dumas, M., Fantinato, M. (eds) Business Process Management Workshops. BPM 2016. Lecture Notes in Business Information Processing, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-319-58457-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-58457-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58456-0
Online ISBN: 978-3-319-58457-7
eBook Packages: Computer ScienceComputer Science (R0)