
Capturing Policies for BYOD

Joseph Hallett(B) and David Aspinall

School of Informatics, University of Edinburgh, Edinburgh, Scotland
j.hallett@sms.ac.uk

Abstract. BYOD policies are informally specified using natural lan-
guage. We show how the SP4BYOD language can help reduce ambigu-
ity in 5 BYOD policies and link the specification of a BYOD policy to
its implementation. Using a formalisation of the 5 policies written in
SP4BYOD, we make comparisons between them, and explore the dele-
gation relationships within them. We identify that whilst policy acknowl-
edgement is a key part of all 5 policies, this is not managed by existing
MDM tools.

1 Introduction

Employees bring their own devices to work. In the past employees might have
had a dedicated company device. Today around 70% of companies have a BYOD
scheme [1]. In some fields, 85% of staff use their personal devices to look up
work-sensitive information [2]. Controlling employee’s devices is a challenge for
IT departments. Failure to manage devices can lead to employees accidentally
leaking confidential information. Unfortunately companies have limited control
over the devices inside their networks if they do not own them.

One solution to controlling devices is requiring users follow BYOD policies.
A BYOD policy takes the form of a user agreement, written in natural language,
which describes how devices should be used and configured. Various guides are
available for companies wishing to implement a policy from governments, stan-
dards bodies, and organizations seeking to advise [3–5]. On top of user agree-
ments, companies may also use Mobile Device Management (MDM) software
which can help enforce policies. MDM software can configure a device’s security
settings, and add security APIs, helping enforce some aspects of the policies.
But the use of MDM software does not guarantee compliance. One survey from
a leading MDM vendor found over 50% of companies using their MDM soft-
ware still had devices that did not comply with the policy [6]. Reasons for non-
compliance included out-of-date MDM configurations that hadn’t been updated,
and employees tampering with the MDM software.

BYOD policies are becoming more intricate. Prior work has looked at devel-
oping MDM software to enforce some aspects [7–9]. The MDM encoding of a pol-
icy is only part of the problem, however. BYOD policies are specified informally

D. Aspinall—Work supported by EPSRC App Guarden grant (EP/K032666/1) and
the Alan Turing Institute.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
S. De Capitani di Vimercati and F. Martinelli (Eds.): SEC 2017, IFIP AICT 502, pp. 310–323, 2017.
DOI: 10.1007/978-3-319-58469-0 21



Capturing Policies for BYOD 311

using natural language, and they contain more than just access control decisions.
They describe trust relationships inside the company between IT departments,
users, and HR, who each may be delegated to provide rules and make decisions.
Policies contain rules that require employees to acknowledge risks, and regula-
tions. An antivirus or MDM program may be used to implement part of the
policy. But it is the policy that specifies which software to use and when. There
is no automatic way to check how the policy has been implemented and by what.

Companies lack visibility as to how well they implement their policies. When
considering what tools a company may use Morrow notes “particularly with the
BYOD trend IT professionals do not know if anti-virus software is installed or
if it’s current” [10]. Even when devices can implement policies correctly, it is
hard to configure devices that are not owned by the company [11]. Our work
aims to address these problems directly: by using formal languages we can link
the policy to the implementation.

To describe the BYOD policies we present SP4BYOD: a formal language
for linking policies to the tools used to implement them, and distributing deci-
sions to relevant parties. Using a formalization of five BYOD policies written
using SP4BYOD we identify different idioms and common delegation patterns
present in BYOD policies. Our formalizations pick out the common concerns
and trust relationships in these policies. We look at what decisions and trust
relationships are used in BYOD policies. We identify BYOD idioms that cap-
ture frequently seen decisions in BYOD policies. These give a guide for where
future work implementing MDM tools should focus their efforts to cover more
aspects of policies.

SP4BYOD is not designed to replace existing static and dynamic analysis
and enforcement tools. A company might use multiple tools, app stores, or con-
tractual agreements with employees to enforce their policies. We aim to help
clarify the meaning of ambiguous natural language policy documents, and pro-
vide a rigorous means for following them. A company can use any MDM tool,
curated app store or user agreement to enforce their policy. SP4BYOD links the
specification of the policy to its implementation, showing exactly how a policy
is implemented and giving a rigorous means to enforce it.

We show how SP4BYOD can be used to encode policies and describe precisely
the different trust relationships. SP4BYOD is an instantiation of the SecPAL
authorization language [12] for mobile device policies and implemented atop
of AppPAL [13], which adds mobile device specific predicates to SecPAL, for
example, capturing app permissions. SecPAL is also a useful tool for describing
other policies surrounding mobile ecosystems [14]. Our SP4BYOD implementa-
tion can be easily extended to support new types of policies. It also gives us
access to tooling we have developed to check SP4BYOD policies for complete-
ness and redundant statements. For this work additional tooling was developed
to help visualise policies and describe their contents. This was helpful for making
comparisons between policies and checking our formalisation for mistakes.



312 J. Hallett and D. Aspinall

In summary, our work makes the following contributions:

– We present a formalisation of five different BYOD policies in SP4BYOD: a
new instantiation of SecPAL for describing BYOD policies (Sect. 2).

– Using our formalisation of the policies we make comparisons between the
different policies. Unlike previous work which looks at individual policies [15],
our work looks at policies across a variety of domains (Sect. 4).

– We identify that delegation and acknowledgements are an important aspect
of BYOD policies that current MDM software does not look at (Sect. 6).

1.1 Related Work

Martinelli et al.’s work looks at creating a dynamic permissions manager, called
UC-Droid. Their tool can alter what an app’s Android permissions are at run
time based on policies [8]. The tool allows companies to reconfigure their apps
depending on whether the employee is at work, in a secret lab, or working out-
of-hours. These kinds of policies are more configurable than the geofenced based
policies some MDM tools provide. Other work has looked at enforcing different
policies based on what roles an employee holds [7]. The work allowed a company
to verify the devices within their network and what servers and services they
could access. It also describes a mechanism for providing different users with
different policies.

Armando et al. developed BYODroid as a tool for enforcing BYOD poli-
cies through a secure marketplace [16]. Their tool allows companies to distribute
apps through a secure app store [9]. The store ensures apps meet policies through
a combination of static analysis and app rewriting with dynamic enforcement.
Their policies are low level, based on ConSpec [17], allowing checks based on
Dalvik VM’s state. Using their tool, they implemented parts of a NATO Com-
munications and Information Agency policy relating to personal networks and
data management [15]. Their work shows how the app-specific sections of a
BYOD policy can be check and enforced using tools. They did not look at where
the checks or policies come from, however.

An SP4BYOD policy might use BYODroid to ensure that parts of a policy
are enforced (as well as other tools for other parts). Using SP4BYOD, we can
distribute policies by sharing signed statements from different principals. We
can delegate to other marketplaces to decide if an app meets different parts of
policies. We can even create new stores by composing their policies and using
multiple store’s statements about the apps. Distributing checks like this is use-
ful when using some static analysis tools which can take a long time to run
(e.g. TaintDroid [18]).

Tools, such as Dr. Android and Mr. Hyde [19] and Aurasium [20], have sug-
gested app wrapping (where an app is recompiled to use guarded APIs) as a pos-
sible way to enforce policies. App rewriting has the advantage that the device’s
underlying OS needn’t be modified as the apps are changed at the source code
level. However app wrapping alone without additional analysis is insufficient to
enforce policies effectively [21].



Capturing Policies for BYOD 313

Our approach taken with SP4BYOD is similar to work on safety cases.
A safety case is an argument made to say a system is acceptably safe to be used in
a given scenario. Industrial safety cases are often described in natural language,
which can be ambiguous and unclear. Goal Structuring Notation (GSN) [22] is
one approach to make the safety cases explicit. It is a graphical formal notation
that lets engineers argue that a system is safe by linking safety goals to the argu-
ments made for a system’s safety. Similarly, work developing a formal language
for specifying how medical staff should collaborate in a healthcare scenario [23]
again helps clarify how roles are filled in a medical context on the basis of staff
and different healthcare providers.

It is interesting to examine how leading [24] MDM tools such as IBM’s
MaaS360, or Blackberry Enterprise Services (BES), enforce BYOD policies.
These tools support enforcing and checking compliance policies. They do not,
however, use policy languages to specify policies; rather they provide a lim-
ited number of checkboxes that admins can tweak (an excerpt of a policy from
MaaS360 is shown in Fig. 1). These tools allow administrators to configure a
device’s settings and provision the devices with company apps. Some support
app wrapping, which enables them to encrypt app data locally, use a VPN within
the app, or prevent apps not being used when the device isn’t compliant. But
because the policies are inflexible and tightly coupled to the device’s OS, inter-
vention by an administrator is often required. Whilst MDM software is good
at configuring devices, selecting which policies to apply is typically a manual

Fig. 1. Excerpt of a policy showing network settings from MaaS360.



314 J. Hallett and D. Aspinall

process performed by an administrator. Removing blacklisted apps is a common
feature, but the selection process of which apps to remove is manual.

2 Capturing BYOD Policies

As mobile devices have become more common in the workplace, BYOD policies
have been written to help control them. Part of their policies are prescriptive: if
you configure your device in this way, you will mitigate that threat. The policies
contain more than just configuration, however. Consider this rule taken from
the Security Policy for the use of handheld devices in corporate environments by
SANS [3].

SANS: Digital camera embedded on handheld devices might be disabled in
restricted environments, according to 〈COMPANY NAME〉 risk analysis. In sen-
sitive facilities, information can be stolen using pictures and possibly sent using
MMS or E-mail services.

In high-security facilities such as R&D labs or design manufacturers, camera
MUST be disabled. Furthermore, MMS messages should be disabled as well, to
prevent malicious users from sending proprietary pictures.

A company could use an MDM program to enforce this. Some MDM tools
can use geofencing to apply a policies in the area around a lab. Techniques
like this would implement the recommendation within the rule, but the rule
itself contains more than just configuration. It talks of restricted environments
decided by company risk analysis. How is this communicated to the device? Does
it access the list of restricted environments once from a server, are they fixed or
can a device decide them for itself? Can it judge using a policy if a location is
restricted? The rule also gives a security objective: prevent malicious users from
sending proprietary pictures. The guidelines are given, however, for the case of a
legitimate user using MMS or email. It may not be sufficient to stop a sufficiently
motivated malicious user.

Our approach does not try to enforce the policy by checking the app’s code
for programming errors. Rather we act as a “glue-layer” between the high-level
policy and the tools and trust relationships used to implement them. We capture
the goals of the policy rules so that the delegations of trust, tools implementing
the policy and their configuration are made explicit. This gives us greater clarity
as to which tool is being trusted to implement what policy. It allows us to see
who is being trusted to make which decisions, and use automatic-tools to uncover
problematic aspects of the policy [14]. Continuing with the example above, we
can encode this in SP4BYOD as:



Capturing Policies for BYOD 315

’company’ says ’risk−analyst’ can-say

Location:L isHighSecurityFacility.

’company’ says Device:D mustDisableIn(Location, ’camera’)
if Location isHighSecurityFacility.

’company’ says Device:D mustDisableIn(Location, ’mms’)
if Location isHighSecurityFacility.

’company’ says User:U hasSatisfied(’proprietary pictures policy’)
if U hasDevice(D),

D mustDisableIn(Location, ’camera’),
D mustDisableIn(Location, ’mms’),
Location isHighSecurityFacility.

After checking the policy we generate a proof tree that shows how the policy
was satisfied. These proof trees not only show how the policy was followed but
also provide an audit trail. In a company decisions may be delegated to different
departments. Auditors can see what happened when things go wrong. They
know who made what decision, and whether they made it through following
policy rules or as a stated fact.

3 Instantiating SecPAL

SecPAL was developed as a distributed access control language [12]. It is designed
to be have a clear readable syntax, and intuitive semantics. It is also designed
to be extensible, which makes it ideal for extending to create new languages. All
SecPAL statements are said by an explicit authority. The authority can say a
fact (that something is described by a predicate), a delegation (that someone
else can-say a fact), or a role assignment (that something can-act-as something
else). This statement optionally contain conditional facts, and constraints that
must be satisfied before the authority will say the statement.

To create SP4BYOD we instantiate SecPAL with four kinds of facts common
in BYOD policies: can, has, is and must. Like other SecPAL-based instantia-
tions [25,26] we extend the syntax of facts to support these constructs.

Fact Meaning

subject canAction The subject is permitted to perform the action

subject hasAction The subject has performed the action

subject isType The subject is a member of the type

subject mustAction The subject must perform the action

Facts of the must-kind represent obligations, actions to complete if a partic-
ular scenario presents itself. For these facts, we add a rule to check we perform



316 J. Hallett and D. Aspinall

the obligation. This rule should be checked periodically to ensure compliance.
Our implementation contains tooling to generate these rules automatically, by
parsing the policy.

〈speaker〉 says 〈subject〉 hasSatisfiedObligation〈Action〉
if 〈subject〉 must〈Action〉,

〈subject〉 has〈Action〉.

Facts using is predicates give types to variables. SP4BYOD inherits from
SecPAL’s (and Datalog’s) safety condition that the body of a statements must
reference all the variables in the head. This can lead to some boilerplate code
in policies that may obscure their meaning. To simplify the policies, we add
syntactic sugar for facts giving variables their type (variable isType). Variables
in the head of the statement of the form Type : Variable are replaced by the
variable and a condition Variable isType is added to the condition. The two
statements shown below (taken from the SANS policy) are equivalent, however
we feel the example on the right is easier to read.

’company’ says Device

canConnectToAP(X)

if X isOwnedByCompany,

Device isDevice,

X isAP.

’company’ says Device:D

canConnectToAP(AP:X)

if X isOwnedByCompany.

4 BYOD Policies

We examined 5 policies and encoded them into SP4BYOD looking for common
idioms. We selected these policies as they came from a variety of domains.

– The first is the Security Policy Template: Use of Handheld Devices in a Cor-
porate Environment, published by the SANS Institute [3]. This policy is a
hypothetical policy published to help companies mitigate the threats to cor-
porate assets caused by mobile devices. Companies are expected to modify
the document to suit their needs. The policy is general; not specific to any
particular industry, device, or country’s legislation.

– The second is taken from the Healthcare Information Management System
Society (HiMSS) [27]; a US non-profit company trying to improve healthcare
through IT. The HiMSS policy is relatively short and contains concerns spe-
cific to healthcare scenarios. It is written as a contract the users agree to
follow. In contrast, every other policy we looked at is written as an organi-
sation imposing rules on users they should follow to ensure compliance. The
policy is designed as a sample agreement for a system trying to manage per-
sonal mobile devices in a healthcare environment.

– The third is taken from a British hospital trust [28] and describes the BYOD
scheme used in practice at the hospital.



Capturing Policies for BYOD 317

Table 1. Summary of the contents of each of the BYOD policies.

SANS HiMSS NHS Edinburgh Sirens

Number of rules 33 15 56 20 25

SP4BYOD statements 71 21 58 10 39

Policy coverage 33 (100%) 14 (93%) 40 (71%) 10 (100%)a 22 (88%)

Rules using Acknowledgement 2 10 11 1 6

Rules using Delegation 23 5 33 2 13

Rules describing a restriction 18 3 8 1 5

Principal Speaker Company User nhs-trust Records-management Department
aThe Edinburgh policy contains a large number of rules that whilst marked as such are in fact just

descriptions of the document. All the policy rules that described restrictions or relationships were imple-

mented in SP4BYOD.

– Finally, we looked at two simpler policies from The University of Edin-
burgh [29] and a company specialising in emergency sirens [30]. These policies
are simpler, and shorter than the other policies we looked at comprised of
much more general rules.

We summarise the policies in Table 1. Each policy contains a series of rules,
which we implemented by one or more SP4BYOD statements. The policy cover-
age represents the number of rules that have an SP4BYOD description attached.

All five of the policies make use of acknowledgements. The use of an acknowl-
edgements could be because enforcing that rule in a policy through technical
means is undesirable. It could indicate policy authors care more that the sub-
jects are aware of the rules than they do for rigorous enforcement. All but the
HiMSS policy have rules that include locking down a device by disabling fea-
tures. All but the Edinburgh policy have rules that look at what should happen
if a user loses their device. The rest have rules that require employees inform
someone when something happens. Common concerns, such as these, suggest
where future MDM software should focus their efforts.

Only the NHS and SANS policies, the two most complex policies, describe
when a device can install an app and what kinds of apps are installable. In both
policies this expressed as a delegation to the appropriate groups to authorize an
app. For example, in the SANS policy the IT-Department are responsible for
deciding what apps can be installed. The NHS policy, however, is significantly
more complicated. Apps have to be approved by three different groups (the IGC,
the Employee’s manager, and the relevant group for either clinical or business
cases) before the Trust will say that an employee can install an app.

NHS: Apps for work usage must not be downloaded onto corporately issued mobile
devices (even if approved on the NHS apps store) unless they have been approved
through the following Trust channels: Clinical apps; at the time of writing there are
no apps clinically approved by the Trust for use with patients/clients. However, if
a member of staff believes that there are clinical apps or other technologies that
could benefit their patients/clients, this should be discussed with the clinical lead
in the first instance and ratification should be sought via the Care and Clinical
Policies Group. A clinical app should not be used if it has not been approved via



318 J. Hallett and D. Aspinall

this group. Business apps; at the time of writing there are no business (i.e., non-
clinical) apps approved by the Trust for use other than those preloaded onto the
device at the point of issue. However, if a member of staff believes that there are
apps or other technologies that could benefit their non-clinical work, ratification of
the app must be sought via the Management of Information Group (MIG). An app
should not be used if it has not been approved via this group. Following approval
through Care and Clinical Policies and/or MIG, final approval will be required
through Integrated Governance Committee. Use of paid apps must be agreed in
advance with the device holder’s line manager and there should be a demonstrable
benefit.

’nhs−trust’ says App isUsable if App hasMet(’clinical−use−case’).
’nhs−trust’ says App isUsable if App hasMet(’business−use−case’).
’nhs−trust’ says ’cacpg’ can-say App:A hasMet(’clinical−use−case’).
’nhs−trust’ says ’mig’ can-say App:A hasMet(’business−use−case’).
’nhs−trust’ says App isInstallable

if App hasMet(’final−app−approval’), App isUsable.

’nhs−trust’ says ’igc ’ can-say App hasMet(’final−app−approval’).
’nhs−trust’ says Device canInstall(App)

if App isInstallable, App isApprovedFor(Device).

’nhs−trust’ says Employee:Manager can-say

App:A isApprovedFor(Device)

if Manager isResponsibleFor(Device).

We might expect corporate policies to describe what apps can be installed in
terms of the apps functionality. This does not appear to be the case, however.
As part of selecting the apps, an IT department or group may choose to use
advanced instrumentation and policies [9]. Alternatively, they may manually
chose apps to form a curated app store as some MDM vendors allow. From the
perspective of the policy, it is more important who makes the decision rather
than what they chose, however.

5 Authorization Example

As a worked-example consider the NHS rules for finding approved apps (Sect. 4).
Suppose an employee, Alice, wished to get an app, com.microsoft.office,
installed on their device. To do so, Alice would have to convince the device that:

’nhs−trust’ says ’ alices −phone’ canInstall(’com.microsoft.office ’).

Alice wishes to use the app for business so to satisfy the policy Alice must
collect the following statements:

– ’nhs−trust’ says ’com.microsoft . office ’ isInstallable.

For this, she needs a statement from the Management of Information Group
that it has a business use-case. She also needs approval from the Integrated
Governance Committee.
1. ’mig’ says ’com.microsoft . office ’ hasMet(’business−use−case’).



Capturing Policies for BYOD 319

2. ’ igc ’ says ’com.microsoft . office ’ hasMet(’ final −app−approval’).

– ’nhs−trust’ says ’com.microsoft . office ’ isApprovedFor(’alices−device’). To get
this she needs a statement from the manager responsible for Alice’s device
(Bob) approving the app.
3. ’bob’ says ’com.microsoft . office ’ isApprovedFor(’alices−device’).

4. ’nhs−trust’ says ’bob’ isResponsibleFor(’alices−device’).

– Additionally, she needs the following typing statements.
5. ’nhs−trust’ says ’com.microsoft . office ’ isApp.

6. ’nhs−trust’ says ’bob’ isEmployee.

Alice obtains the statements by contacting each of the speakers. Each may
either give her the statement she needs or may give her additional rules. For
example, the MIG and IGC may be happy to state their statements (after a
review). When checking if the app is an App in Item 5, the NHS trust may be
instead inclined to delegate further. They could reply that if the App is in the
Google Play store then they are convinced it is an app. Alice would then have
to obtain additional statements if she wanted to prove this statement. As with
SecPAL, all statements should have a signature from their speaker proving they
said the statement. Alternatively, the speaker could refuse to give the statement,
either because they do not believe it to be true, or they cannot give an answer.
In this case, Alice would have to look for an alternative means to prove the
statement or accept that they cannot install the app.

When the statements have been collected Alice can use a SecPAL inference
tool (such as AppPAL1) to check the policy has been satisfied. The generated
proof from the tool lets auditors review how the decision was made, and verify
the decision-making process.

6 BYOD Idioms

When examining the policies, we noticed two particular idioms in many policies:
acknowledgements and delegation. We describe both idioms in greater detail,
and show how they can be implemented in SP4BYOD, below. MDM tools and
research have focussed so far on implementing restrictions on apps and devices
[8,31,32]. Implementing these controls is a vital aspect of BYOD policies and
all 5 of the policies we looked at had rules that described restrictions (Table 1).
Every policy also contained rules that required employees acknowledgements,
however. Only the SANS policy (which is configuration focussed) contained more
rules that required restrictions than acknowledgements. All the policies contained
more rules featuring delegation relationships than functionality restrictions.

Delegation and Roles Within Policies. Delegation is an important part of
each of the policies. Each of the policies describes through rules how separate
entities may be responsible for making some decisions. These rules can be a

1 https://github.com/apppal/libapppal.

https://github.com/apppal/libapppal


320 J. Hallett and D. Aspinall

delegation to an employee’s manager to authorize a decision (as in the NHS
policy). It could be to technical staff to decide what apps are part of a standard
install (as in the sirens and SANS policies).

SP4BYOD requires an explicit speaker for each statement. Speakers can dele-
gate to others by making a statement about what they can-say. When translating
the policies, the author of the policy is used as the primary speaker of the pol-
icy’s rule (Table 1). For the HiMSS policy, where the user states what they will
do rather than the company stating what they must, the user is the primary
speaker. All the policies describe multiple entities that might make statements
and delegate. With SP4BYOD policies any speaker can delegate a decision to
another speaker (with restrictions on re-delegation). The delegation might be to
a user to acknowledge a policy, or it might be to other groups in the company
who are responsible for certain decisions.

In all the policies we looked at the majority of the decisions are made by three
groups of speakers: the company, the IT-department, and the users or employ-
ees. All the policies also delegate to a user (apart from HiMSS where the user
is the primary speaker). The user is typically responsible for providing infor-
mation, such as agreements to policies, reporting devices missing, and updating
passcodes. In the Sirens, SANS and NHS policy each describe an IT-department
who are delegated to make some decisions. The HiMSS policy describes an xyz-
health-system who act similarly to an IT-department. These decisions are more
varied and can overlap with the responsibilities of the company. In the NHS and
SANS policies, the IT department is responsible for maintaining lists of activated
devices. In the Sirens and SANS policies, the IT department maintains a list of
what is installable on a device or not.

When a policy decision requires input from a third-party delegation is used.
For example, an employee’s manager has to authorise an app install. The SecPAL
can-say statement is the basis for a delegation. We can ask the HR department
to state who is someone’s manager.

’company’ says ’hr−department’ can-say

Employee:E hasManager(Employee:M).

If we wish to delegate to someone, we can add conditionals to the can-say state-
ment that enforces any relationship between the delegating and delegated par-
ties.

’company’ says Manager can-say

Employee canInstall(App:A)

if Employee hasManager(Manager).

7 Conclusions

We have presented SP4BYOD: an instantiation of SecPAL for BYOD policies.
Using an SP4BYOD formalization of 5 BYOD policies we have identified that



Capturing Policies for BYOD 321

whilst delegation and acknowledgement form a large part of written BYOD poli-
cies, existing BYOD tools ignore them. BYOD policies contain delegation and
trust relationships that define who is responsible for making different decisions in
a company. Sometimes that is administrators and technical staff deciding what
to permit inside the company, and sometimes it is the user’s themselves agreeing
to follow a policy. Previous work has focussed on the technical staff’s decisions
and developing new ways to automate their decisions. Our work looks at the
policies at a higher level tracking, managing and authorizing policies based on
what people have said and what tools were run.

SP4BYOD improves upon existing MDM tools by allowing sophisticated del-
egation relations and by providing a declarative language for expressing policies.
The language gives greater flexibility to policy authors and allows them to write
policies that depend on other policies rather than predefined settings and groups.
It lets us track what users have agreed to, what their policies are, how they are
specified, and how they are satisfied.

Acknowledgements were used in all the policies, but were not a part of MDM
tools. A purely speculative explanation for this might be that the people using
the MDM software (the IT department) do not care about the acknowledge-
ments, and that another department (HR perhaps) are responsible for tracking
what corporate policies employees have agreed to and have their own methods
for dealing with that. Future work will aim to further explore how these acknowl-
edgements are used within a company and how to manage them in a practical
manner.

Related systems, such as GSN described in Subsect. 1.1, use a graphical nota-
tion. Whilst SecPAL-based languages are designed to be readable, diagrams can
help make authors write policies and auditors understand them. Future work
will look at extending SecPAL’s notation to create such diagrams and further
aid readability.

Acknowledgement. All the policies we looked at require their subjects to be aware
and acknowledge certain rules or policies, and that the company may perform certain
actions. For example, the NHS and HiMSS policies state that the organisation will
wipe devices remotely to protect confidential information a user loses their device.
Both policies also say that employees would lose personal information if they had it on
the device and the company needed to erase it. The employee is required to be aware
of this, and in the case of the HiMSS policy, agree to hold the company harmless for
the loss.

Both the SANS and the siren-company policies use acknowledgements to link to
other sets of rules that employees should follow. These policies are not further specified,
and in the case of an acceptable use policy may be hard to enforce automatically. The
SANS policy requires that all employees follow an email security, acceptable use, and an
eCommerce-security policy. The Sirens policy expects an employee to use their devices
ethically and abide by an acceptable use policy.

When there is a (usually separate) set of rules and concerns employees should be
aware of acknowledgements are used. The company may not wish to enforce these
separate rules automatically, however. For instance, a company may have an ethics
policy that says employees should not use devices for criminal purposes. The company



322 J. Hallett and D. Aspinall

is not interested in, or capable of, defining what is criminal. They trust their employees
to make the right decision and to be aware of the rules.

To implement these in SP4BYOD, a policy author creates two rules: the
first stating their employees must have acknowledged the policy, the sec-
ond delegating the acceptance of the policy to the employee themselves.

References

1. Schulze, H.: BYOD & Mobile Security 2016 Spotlight Report. Technical report.
LinkedIn Information Security (2016). http://static.tenable.com/whitepapers/
byod-and-mobile-security-report-2016.pdf

2. Patel, R.K., et al.: A UK perspective on smartphone use amongst doctors within
the surgical profession. Ann. Med. Surg. 4(2), 107–112 (2015)

3. Guerin, N.R.C.: Security Policy for the use of handheld devices in corporate envi-
ronments. Technical report, SANS, May 2008

4. Souppaya, M., Scarfone, K.: Guidelines for managing and securing mobile devices
in the enterprise: NIST Special Publication 800–124 Revision 1 (Draft). National
Institute of Standards and Technology (2012)

5. CESG. BYOD Guidance. Good Technology. Technical report, CESG, March 2015
6. MobileIron Security Labs. Q4 Mobile Security and Risk Review. Technical report,

MobileIron Security Labs, December 2015
7. Costantino, G., et al.: Towards enforcing on-the-y policies in BYOD environments.

In: International Conference on Information Assurance and Security, December
2013

8. Martinelli, F., Mori, P., Saracino, A.: Control, enhancing android permission
through usage: a BYOD use-case. In: Symposium on Applied Computing (2016)

9. Armando, A., et al.: Enabling BYOD through secure meta-market. In: ACM Con-
ference on Security and Privacy in Wireless & Mobile Networks, August 2014

10. Morrow, B.: BYOD security challenges: control and protect your most sensitive
data. Netw. Secur. 2012, 5–8 (2012)

11. Tokuyoshi, B.: The security implications of BYOD. Netw. Secur. 2013(4), 1213
(2013)

12. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: design and semantics of a decen-
tralized authorization language. J. Comput. Secur. 18(4), 619–665 (2010)

13. Hallett, J., Aspinall, D.: AppPAL for android. In: Caballero, J., Bodden, E.,
Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639, pp. 216–232. Springer,
Cham (2016). doi:10.1007/978-3-319-30806-7 14

14. Hallett, J., Aspinall, D.: Specifying BYOD policies with authorization logic. In:
PhD Symposium at iFM 2016 on Formal Methods. Reykjavik University, June
2016

15. Armando, A., et al.: Developing a NATO BYOD security policy. In: International
Conference on Military Communications and Information Systems, May 2016

16. Armando, A., Costa, G., Merlo, A.: Bring your own device, securely. In: Proceed-
ings of the 28th Annual ACM Symposium on Applied Computing (SAC 2013), pp.
1852–1858. ACM, New York (2013)

http://static.tenable.com/whitepapers/byod-and-mobile-security-report-2016.pdf
http://static.tenable.com/whitepapers/byod-and-mobile-security-report-2016.pdf
http://dx.doi.org/10.1007/978-3-319-30806-7_14


Capturing Policies for BYOD 323

17. Aktug, I., Naliuka, K.: ConSpec–a formal language for policy specification. Elec-
tron. Notes Theor. Comput. Sci. 197, 45–58 (2008)

18. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32, 5 (2014)

19. Jeon, J., et al.: Dr. Android and Mr. Hide: fine-grained permissions in android
applications. In: Proceedings of the Second ACM Workshop on Security and Pri-
vacy in Smartphones and Mobile Devices (2012)

20. Xu, R., Sadi, H., Anderson, R.: Aurasium: practical policy enforcement for android
applications. In: Usenix Security Symposium (2012)

21. Hao, H., Singh, V., Du, W.: On the effectiveness of API-level access control using
bytecode rewriting in Android. In: ACM Asia Conference on Computer and Com-
munications Security (2013)

22. Kelly, T., Weaver, R.: The goal structuring notation – a safety argument notation.
In: Proceedings of the Dependable Systems and Networks Workshop on Assurance
Cases (2004). http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf. Accessed 19 Dec
2016

23. Papapanagiotou, P., Fleuriot, J.D.: Formal verification of collaboration patterns
in healthcare. Behav. Inf. Technol. 33(12), 1278–1293 (2014)

24. Smith, R., et al.: Magic quadrant for enterprise mobility management suites.
Technical report, G00279887. Gartrer, June 2016. https://www.gartner.com/doc/
reprints?id=1-390IMNG&ct=160608&st=sb

25. Becker, M.Y., Malkis, A., Bussard, L.: A framework for privacy preferences
and data-handling policies. Technical report, MSRTR2009128. Microsoft Research
(2009)

26. Aziz, B., Arenas, A., Wilson, M.: SecPAL4DSA: a policy language for specifying
data sharing agreements. In: Park, J.J., Lopez, J., Yeo, S.-S., Shon, T., Taniar, D.
(eds.) STA 2011. CCIS, vol. 186, pp. 29–36. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22339-6 4

27. Healthcare Information Management Systems Society. Mobile Security Toolkit:
Sample Mobile Device User Agreement. Healthcare Information and Management
Systems Society (2012)

28. Kennington, G., et al.: Mobiles devices policy. Technical report, Torbay, Southern
Devon Health, and Care NHS Trust, March 2014

29. Williamson, D., Grzybowski, A., Graham, S.: Bring your own device policy. Policy
15. University of Edinburgh, February 2015. http://www.ed.ac.uk/files/imports/
fileManager/BYODPolicy.pdf. Accessed 14 Oct 2016

30. Code3PSE.org. Sample BYOD Policy. http://www.code3pse.com/public/media/
22845.pdf. Accessed 14 Oct 2016

31. IBM MaaS360 - Enterprise Mobility Management (EMM). http://www-03.ibm.
com/security/mobile/maas360.html. Accessed 12 Oct 2016

32. Armando, A., et al.: Formal modeling and automatic enforcement of bring your
own device policies. Int. J. Inf. Secur. 14, 123–140 (2014)

http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf
https://www.gartner.com/doc/reprints?id=1-390IMNG&ct=160608&st=sb
https://www.gartner.com/doc/reprints?id=1-390IMNG&ct=160608&st=sb
http://dx.doi.org/10.1007/978-3-642-22339-6_4
http://dx.doi.org/10.1007/978-3-642-22339-6_4
http://www.ed.ac.uk/files/imports/fileManager/BYODPolicy.pdf
http://www.ed.ac.uk/files/imports/fileManager/BYODPolicy.pdf
http://www.code3pse.com/public/media/22845.pdf
http://www.code3pse.com/public/media/22845.pdf
http://www-03.ibm.com/security/mobile/maas360.html
http://www-03.ibm.com/security/mobile/maas360.html

	Capturing Policies for BYOD
	1 Introduction
	1.1 Related Work

	2 Capturing BYOD Policies
	3 Instantiating SecPAL
	4 BYOD Policies
	5 Authorization Example
	6 BYOD Idioms
	7 Conclusions
	References


