Skip to main content

Character-Based Phylogeny Construction and Its Application to Tumor Evolution

  • Conference paper
  • First Online:
Unveiling Dynamics and Complexity (CiE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10307))

Included in the following conference series:

Abstract

Character-based Phylogeny Construction is a well-known combinatorial problem whose input is a matrix M and we want to compute a phylogeny that is compatible with the actual species encoded by M.

In this paper we survey some of the known formulations and algorithms for some variants of this problem. Finally, we present the connections between these problems and tumor evolution, and we discuss some of the most important open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. Comput. 23(6), 1216–1224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: a direct approach. J. Comput. Biol. 10(3–4), 323–340 (2003)

    Article  Google Scholar 

  3. Benham, C., Kannan, S., Paterson, M., Warnow, T.: Hen’s teeth and whale’s feet: generalized characters and their compatibility. J. Comp. Biol. 2(4), 515–525 (1995)

    Article  Google Scholar 

  4. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992). doi:10.1007/3-540-55719-9_80

    Chapter  Google Scholar 

  5. Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype problem. Algorithmica 48(3), 267–285 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonizzoni, P., Braghin, C., Dondi, R., Trucco, G.: The binary perfect phylogeny with persistent characters. Theor. Comput. Sci. 454, 51–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonizzoni, P., Carrieri, A.P., Della Vedova, G., Rizzi, R., Trucco, G.: A colored graph approach to perfect phylogeny with persistent characters. Theor. Comput. Sci. 658, 60–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonizzoni, P., Carrieri, A.P., Della Vedova, G., Trucco, G.: Explaining evolution via constrained persistent perfect phylogeny. BMC Genomics 15(6), S10 (2014)

    Article  Google Scholar 

  9. Bonizzoni, P., Della Vedova, G., Trucco, G.: Solving the persistent phylogeny problem in polynomial time. CoRR, abs/1611.01017 (2016)

    Google Scholar 

  10. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson, F.R., Kendall, D.G., Tautu, P. (eds.) Mathematics in the Archaelogical and Historical Sciences. Edinburgh University Press, Edinburgh (1971)

    Google Scholar 

  12. Ding, L., Raphael, B.J., Chen, F., Wendl, M.C.: Advances for studying clonal evolution in cancer. Cancer Lett. 340(2), 212–219 (2013)

    Article  Google Scholar 

  13. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem. J. Comput. Biol. 13(2), 522–553 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Kebir, M., Oesper, L., Acheson-Field, H., Raphael, B.J.: Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)

    Article  Google Scholar 

  15. El-Kebir, M., Satas, G., Oesper, L., Raphael, B.: Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)

    Article  Google Scholar 

  16. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  17. Fernandez-Baca, D.: The perfect phylogeny problem. In: Du, D.Z., Cheng, X. (eds.) Steiner Trees in Industries. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  18. Goldberg, L.A., Goldberg, P.W., Phillips, C.A., Sweedyk, E., Warnow, T.: Minimizing phylogenetic number to find good evolutionary trees. Discrete Appl. Math. 71(1–3), 111–136 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via perfect path phylogenies. Discrete Appl. Math. 155, 788–805 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Greaves, M., Maley, C.C.: Clonal evolution in cancer. Nature 481(7381), 306–313 (2012)

    Article  Google Scholar 

  21. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  23. Gusfield, D.: Persistent phylogeny: a galled-tree and integer linear programming approach. In: Proceedings of the 6th ACM BCB Conference, pp. 443–451 (2015)

    Google Scholar 

  24. Hajirasouliha, I., Mahmoody, A., Raphael, B.J.: A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics 30(12), i78–i86 (2014)

    Article  Google Scholar 

  25. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM J. Comput. 26(6), 1749–1763 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kollar, E., Fisher, C.: Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science 207, 993–995 (1980)

    Article  Google Scholar 

  27. Lawrence, M.S., Stojanov, P., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)

    Article  Google Scholar 

  28. Maňuch, J., Patterson, M., Gupta, A.: On the generalised character compatibility problem for non-branching character trees. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 268–276. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02882-3_27

    Chapter  Google Scholar 

  29. Maňuch, J., Patterson, M., Gupta, A.: Towards a characterisation of the generalised cladistic character compatibility problem for non-branching character trees. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 440–451. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21260-4_41

    Chapter  Google Scholar 

  30. Miller, C.A., et al.: Sciclone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol. 10(8), e1003665 (2014)

    Article  Google Scholar 

  31. Navin, N.E.: Cancer genomics: one cell at a time. Genome Biol. 15(8), 452 (2014)

    Article  Google Scholar 

  32. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. Siam J. Comput. 33(3), 590–607 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Przytycka, T., Davis, G., Song, N., Durand, D.: Graph theoretical insights into evolution of multidomain proteins. J. Comput. Biol. 13(2), 351–363 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. van Rens, K.E., Mäkinen, V., Tomescu, A.I.: SNV-PPILP: refined SNV calling for tumor data using perfect phylogenies and ILP. Bioinf. 31(7), 1133–1135 (2015)

    Article  Google Scholar 

  35. Roth, A., Khattra, J., et al.: Pyclone: statistical inference of clonal population structure in cancer. Nat. Methods 11(4), 396–398 (2014)

    Article  Google Scholar 

  36. Steel, M.A.: Phylogeny: Discrete and Random Processes in Evolution. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (2016)

    Book  MATH  Google Scholar 

  37. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the MIUR PRIN 2010–2011 grant “Automi e Linguaggi Formali: Aspetti Matematici e Applicativi” code 2010LYA9RH, of the Cariplo Foundation grant 2013–0955 (Modulation of anti cancer immune response by regulatory non-coding RNAs), of the FA grants 2013-ATE-0281, 2014-ATE-0382, and 2015-ATE-0113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Della Vedova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Della Vedova, G., Patterson, M., Rizzi, R., Soto, M. (2017). Character-Based Phylogeny Construction and Its Application to Tumor Evolution. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58741-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58740-0

  • Online ISBN: 978-3-319-58741-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics