Abstract
We study Turing computable embeddings for various classes of linear orders. The concept of a Turing computable embedding (or tc-embedding for short) was developed by Calvert, Cummins, Knight, and Miller as an effective counterpart for Borel embeddings. We are focused on tc-embeddings for classes equipped with computable infinitary \(\varSigma _{\alpha }\) equivalence, denoted by \(\sim ^c_{\alpha }\). In this paper, we isolate a natural subclass of linear orders, denoted by WMB, such that \((WMB,\cong )\) is not universal under tc-embeddings, but for any computable ordinal \(\alpha \ge 5\), \((WMB, \sim ^c_{\alpha })\) is universal under tc-embeddings. Informally speaking, WMB is not tc-universal, but it becomes tc-universal if one imposes some natural restrictions on the effective complexity of the syntax. We also give a complete syntactic characterization for classes \((K,\cong )\) that are Turing computably embeddable into some specific classes \((\mathcal {C},\cong )\) of well-orders. This extends the similar result of Knight, Miller, and Vanden Boom for the class of all finite linear orders \(\mathcal {C}_{fin}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ash, C.J.: Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees. Trans. Am. Math. Soc. 298(2), 497–514 (1986). doi:10.1090/S0002-9947-1986-0860377-7
Hirschfeldt, D.R., Khoussainov, B., Shore, R.A., Slinko, A.M.: Degree spectra and computable dimensions in algebraic structures. Ann. Pure Appl. Logic 115(1–3), 71–113 (2002). doi:10.1016/S0168-0072(01)00087-2
Calvert, W., Cummins, D., Knight, J.F., Miller, S.: Comparing classes of finite structures. Algebra Logic 43(6), 374–392 (2004). doi:10.1023/B:ALLO.0000048827.30718.2c
Fokina, E.B., Friedman, S.-D.: On \(\Sigma ^1_1\) equivalence relations over the natural numbers. Math. Log. Q. 58(1–2), 113–124 (2012). doi:10.1002/malq.201020063
Harrison-Trainor, M., Melnikov, A., Miller, R., Montálban, A.: Computable functors and effective interpretability. J. Symbolic Logic (to appear). doi:10.1017/jsl.2016.12
Friedman, H., Stanley, L.: A Borel reducibility theory for classes of countable structures. J. Symbolic Logic 54(3), 894–914 (1989). doi:10.2307/2274750
Knight, J.F., Miller, S., Vanden Boom, M.: Turing computable embeddings. J. Symbolic Logic 72(3), 901–918 (2007). doi:10.2178/jsl/1191333847
Chisholm, J., Knight, J.F., Miller, S.: Computable embeddings and strongly minimal theories. J. Symbolic Logic 72(3), 1031–1040 (2007). doi:10.2178/jsl/1191333854
Fokina, E., Knight, J.F., Melnikov, A., Quinn, S.M., Safranski, C.: Classes of Ulm type and coding rank-homogeneous trees in other structures. J. Symbolic Logic 76(3), 846–869 (2011). doi:10.2178/jsl/1309952523
Ocasio-González, V.A.: Turing computable embeddings and coding families of sets. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 539–548. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30870-3_54
Andrews, U., Dushenin, D.I., Hill, C., Knight, J.F., Melnikov, A.G.: Comparing classes of finite sums. Algebra Logic 54(6), 489–501 (2016). doi:10.1007/s10469-016-9368-7
VanDenDriessche, S.M.: Embedding computable infinitary equivalence into \(p\)-groups. Ph.D. thesis, University of Notre Dame (2013)
Wright, M.: Turing computable embeddings of equivalences other than isomorphism. Proc. Am. Math. Soc. 142, 1795–1811 (2014). doi:10.1090/S0002-9939-2014-11878-8
Goncharov, S.S.: Groups with a finite number of constructivizations. Sov. Math. Dokl. 23, 58–61 (1981)
Ash, C.J., Knight, J.F.: Computable structures and the hyperarithmetical hierarchy. In: Studies in Logic and the Foundations of Mathematics, vol. 144. Elsevier Science B.V., Amsterdam (2000)
Knight, J.F.: Using computability to measure complexity of algebraic structures and classes of structures. Lobachevskii J. Math. 35(4), 304–312 (2014). doi:10.1134/S1995080214040192
Ash, C.J., Knight, J.F.: Pairs of recursive structures. Ann. Pure Appl. Logic 46(3), 211–234 (1990). doi:10.1016/0168-0072(90)90004-L
Acknowledgements
The author is grateful to Sergey Goncharov for fruitful discussions on the subject. The author also thanks the anonymous reviewers for their helpful suggestions. The reported study was funded by RFBR, according to the research project No. 16-31-60058 mol_a_dk.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bazhenov, N. (2017). Turing Computable Embeddings, Computable Infinitary Equivalence, and Linear Orders. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-58741-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58740-0
Online ISBN: 978-3-319-58741-7
eBook Packages: Computer ScienceComputer Science (R0)