Skip to main content

A Guided Tour to Computational Haplotyping

  • Conference paper
  • First Online:
Unveiling Dynamics and Complexity (CiE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10307))

Included in the following conference series:

Abstract

Human genomes come in pairs: every individual inherits one version of the genome from the mother and another version from the father. Hence, every chromosome exists in two similar yet distinct “copies”, called haplotypes. The problem of determining the full sequences of both haplotypes is known as phasing or haplotyping. In this paper, we review different approaches for haplotyping and point out how they are formalized as optimization problems. We survey different technologies and, in this way, provide guidance on the characteristics of problem instances resulting from present day technologies. Furthermore, we highlight open algorithmic challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawson, D.J., Hellenthal, G., Myers, S., Falush, D.: Inference of population structure using dense haplotype data. PLoS Genet. 8(1), e1002453 (2012)

    Article  Google Scholar 

  2. Sabeti, P.C., Varilly, P., Fry, B., et al.: Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164), 913–918 (2007)

    Article  Google Scholar 

  3. Tewhey, R., Bansal, V., Torkamani, A., Topol, E.J., Schork, N.J.: The importance of phase information for human genomics. Nat. Rev. Genet. 12(3), 215–223 (2011)

    Article  Google Scholar 

  4. Corradin, O., Cohen, A.J., Luppino, J.M., Bayles, I.M., Schumacher, F.R., Scacheri, P.C.: Modeling disease risk through analysis of physical interactions between genetic variants within chromatin regulatory circuitry. Nat. Genet. 48(11), 1313–1320 (2016)

    Article  Google Scholar 

  5. Shlyueva, D., Stampfel, G., Stark, A.: Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15(4), 272–286 (2014)

    Article  Google Scholar 

  6. Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-Andr, V., Sigova, A.A., Hoke, H.A., Young, R.A.: Super-enhancers in the control of cell identity and disease. Cell 155(4), 934–947 (2013)

    Article  Google Scholar 

  7. Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., Young, R.A.: Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153(2), 307–319 (2013)

    Article  Google Scholar 

  8. Corradin, O., Saiakhova, A., Akhtar-Zaidi, B., Myeroff, L., Willis, J., Cowper-Sallari, R., Lupien, M., Markowitz, S., Scacheri, P.C.: Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 24(1), 1–13 (2014)

    Article  Google Scholar 

  9. Eskin, E.: Discovering genes involved in disease and the mystery of missing heritability. Commun. ACM 58(10), 80–87 (2015)

    Article  Google Scholar 

  10. Glusman, G., Cox, H.C., Roach, J.C.: Whole-genome haplotyping approaches and genomic medicine. Genome Med. 6(9), 73 (2014)

    Article  Google Scholar 

  11. Browning, S.R., Browning, B.L.: Haplotype phasing: existing methods and new developments. Nat. Rev. Genet. 12(10), 703–714 (2011)

    Article  Google Scholar 

  12. Browning, S.R., Browning, B.L.: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81(5), 1084–1097 (2007)

    Article  Google Scholar 

  13. Delaneau, O., Marchini, J., Zagury, J.F.: A linear complexity phasing method for thousands of genomes. Nat. Meth. 9(2), 179–181 (2012)

    Article  Google Scholar 

  14. Delaneau, O., Zagury, J.F., Marchini, J.: Improved whole-chromosome phasing for disease and population genetic studies. Nat. Meth. 10(1), 5–6 (2013)

    Article  Google Scholar 

  15. O’Connell, J., Sharp, K., Shrine, N., Wain, L., Hall, I., Tobin, M., Zagury, J.F., Delaneau, O., Marchini, J.: Haplotype estimation for biobank-scale data sets. Nat. Genet. 48(7), 817–820 (2016)

    Article  Google Scholar 

  16. Loh, P.R., Palamara, P.F., Price, A.L.: Fast and accurate long-range phasing in a UK Biobank cohort. Nat. Genet. 48(7), 811–816 (2016)

    Article  Google Scholar 

  17. Loh, P.R., Danecek, P., Palamara, P.F., Fuchsberger, C., Reshef, Y.A., Finucane, H.K., Schoenherr, S., Forer, L., McCarthy, S., Abecasis, G.R., Durbin, R., Price, A.L.: Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48(11), 1443–1448 (2016)

    Article  Google Scholar 

  18. The 1000 Genomes Project Consortium: A global reference for human genetic variation. Nature 526(7571), 68–74 (2015)

    Google Scholar 

  19. The Genome of the Netherlands Consortium: Whole-genome sequence variation, population structure and demographic history of the dutch population. Nat. Genet. 46, 818–825 (2014)

    Google Scholar 

  20. Hehir-Kwa, J.Y., Marschall, T., Kloosterman, W.P., et al.: A high-quality human reference panel reveals the complexity and distribution of genomic structural variants. Nat. Commun. 7, 12989 (2016)

    Article  Google Scholar 

  21. Rastas, P., Ukkonen, E.: Haplotype inference via hierarchical genotype parsing. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS, vol. 4645, pp. 85–97. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74126-8_9

    Chapter  Google Scholar 

  22. Abecasis, G.R., Cherny, S.S., Cookson, W.O., Cardon, L.R.: Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30(1), 97–101 (2002)

    Article  Google Scholar 

  23. Roach, J.C., Glusman, G., Hubley, R., Montsaroff, S.Z., Holloway, A.K., Mauldin, D.E., Srivastava, D., Garg, V., Pollard, K.S., Galas, D.J., Hood, L., Smit, A.F.A.: Chromosomal haplotypes by genetic phasing of human families. Am. J. Hum. Genet. 89(3), 382–397 (2011)

    Article  Google Scholar 

  24. Williams, A.L., Housman, D.E., Rinard, M.C., Gifford, D.K.: Rapid haplotype inference for nuclear families. Genome Biol. 11, R108 (2010)

    Article  Google Scholar 

  25. Chin, C.S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C., O’Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., Cramer, G.R., Delledonne, M., Luo, C., Ecker, J.R., Cantu, D., Rank, D.R., Schatz, M.C.: Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Meth. 13(12), 1050–1054 (2016). Advance online publication

    Article  Google Scholar 

  26. Weisenfeld, N.I., Kumar, V., Shah, P., Church, D., Jae, D.B.: Direct determination of diploid genome sequences. bioRxiv, 070425 (2016)

    Google Scholar 

  27. Snyder, M.W., Adey, A., Kitzman, J.O., Shendure, J.: Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet. 16(6), 344–358 (2015)

    Article  Google Scholar 

  28. Marchini, J., Cutler, D., Patterson, N., Stephens, M., Eskin, E., Halperin, E., Lin, S., Qin, Z.S., Munro, H.M., Abecasis, G.R., Donnelly, P.: A comparison of phasing algorithms for trios and unrelated individuals. Am. J. Hum. Genet. 78(3), 437–450 (2006)

    Article  Google Scholar 

  29. Chen, W., Li, B., Zeng, Z., Sanna, S., Sidore, C., Busonero, F., Kang, H.M., Li, Y., Abecasis, G.R.: Genotype calling and haplotyping in parent-offspring trios. Genome Res. 23(1), 142–151 (2013)

    Article  Google Scholar 

  30. Delaneau, O., Howie, B., Cox, A.J., Zagury, J.F., Marchini, J.: Haplotype estimation using sequencing reads. Am. J. Hum. Genet. 93(4), 687–696 (2013)

    Article  Google Scholar 

  31. Garg, S., Martin, M., Marschall, T.: Read-based phasing of related individuals. Bioinformatics (Oxford, England) 32(12), i234–i242 (2016)

    Article  Google Scholar 

  32. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Briefings Bioinform. 3(1), 23–31 (2002)

    Article  Google Scholar 

  33. Cilibrasi, R., Iersel, L., Kelk, S., Tromp, J.: On the complexity of several haplotyping problems. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS, vol. 3692, pp. 128–139. Springer, Heidelberg (2005). doi:10.1007/11557067_11

    Chapter  Google Scholar 

  34. Zhao, Y.Y., Wu, L.Y., Zhang, J.H., Wang, R.S., Zhang, X.S.: Haplotype assembly from aligned weighted SNP fragments. Comput. Biol. Chem. 29(4), 281–287 (2005)

    Article  MATH  Google Scholar 

  35. Bonizzoni, P., Dondi, R., Klau, G.W., Pirola, Y., Pisanti, N., Zaccaria, S.: On the minimum error correction problem for haplotype assembly in diploid and polyploid genomes. J. Comput. Biol. 23(9), 718–736 (2016). A journal of computational molecular cell biology

    Article  MathSciNet  Google Scholar 

  36. Hanscom, C., Talkowski, M.: Design of large-insert jumping libraries for structural variant detection using illumina sequencing. Curr. Protoc. Hum. Genet. 80, 7.22.1–7.22.9 (2014)

    Article  Google Scholar 

  37. Zheng, G.X.Y., Lau, B.T., Schnall-Levin, M., et al.: Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 34(3), 303–311 (2016)

    Article  Google Scholar 

  38. Chaisson, M.J.P., Huddleston, J., Dennis, M.Y., Sudmant, P.H., Malig, M., Hormozdiari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., Landolin, J.M., Stamatoyannopoulos, J.A., Hunkapiller, M.W., Korlach, J., Eichler, E.E.: Resolving the complexity of the human genome using single-molecule sequencing. Nature 517(7536), 608–611 (2015)

    Article  Google Scholar 

  39. Porubský, D., Sanders, A.D., van Wietmarschen, N., Falconer, E., Hills, M., Spierings, D.C.J., Bevova, M.R., Guryev, V., Lansdorp, P.M.: Direct chromosome-length haplotyping by single-cell sequencing. Genome Res. 26(11), 1565–1574 (2016)

    Article  Google Scholar 

  40. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289–293 (2009)

    Article  Google Scholar 

  41. Rhee, J.K., Li, H., Joung, J.G., Hwang, K.B., Zhang, B.T., Shin, S.Y.: Survey of computational haplotype determination methods for single individual. Genes Genomics 38(1), 1–12 (2015)

    Article  Google Scholar 

  42. He, D., Choi, A., Pipatsrisawat, K., Darwiche, A., Eskin, E.: Optimal algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics 26(12), i183–i190 (2010)

    Article  Google Scholar 

  43. Deng, F., Cui, W., Wang, L.: A highly accurate heuristic algorithm for the haplotype assembly problem. BMC Genom. 14(Suppl 2), S2 (2013)

    Article  Google Scholar 

  44. Patterson, M., Marschall, T., Pisanti, N., Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap: haplotype assembly for future-generation sequencing reads. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 237–249. Springer, Cham (2014). doi:10.1007/978-3-319-05269-4_19

    Chapter  Google Scholar 

  45. Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol. 22(6), 498–509 (2015)

    Article  Google Scholar 

  46. Kuleshov, V.: Probabilistic single-individual haplotyping. Bioinformatics (Oxford, England) 30(17), i379–i385 (2014)

    Article  Google Scholar 

  47. Pirola, Y., Zaccaria, S., Dondi, R., Klau, G.W., Pisanti, N., Bonizzoni, P.: HapCol: accurate and memory-efficient haplotype assembly from long reads. Bioinformatics 32(11), 1610–1617 (2015)

    Article  Google Scholar 

  48. Fouilhoux, P., Mahjoub, A.R.: Solving VLSI design and DNA sequencing problems using bipartization of graphs. Comput. Optim. Appl. 51(2), 749–781 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen, Z.Z., Deng, F., Wang, L.: Exact algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics (Oxford, England) 29(16), 1938–1945 (2013)

    Article  Google Scholar 

  50. Chen, Z.Z., Deng, F., Shen, C., Wang, Y., Wang, L.: Better ILP-based approaches to haplotype assembly. J. Comput. Biol. 23(7), 537–552 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Marschall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Klau, G.W., Marschall, T. (2017). A Guided Tour to Computational Haplotyping. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58741-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58740-0

  • Online ISBN: 978-3-319-58741-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics