Skip to main content

Eliminating Unbounded Search in Computable Algebra

  • Conference paper
  • First Online:
Unveiling Dynamics and Complexity (CiE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10307))

Included in the following conference series:

Abstract

Klaimullin, Melnikov and Ng [KMNa] have recently suggested a new systematic approach to algorithms in algebra which is intermediate between computationally feasible algebra [CR91, KNRS07] and abstract computable structure theory [AK00, EG00]. In this short survey we discuss some of the key results and ideas of this new topic [KMNa, KMNc, KMNb]. We also suggest several open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also agree that all finite structures are fpr.

  2. 2.

    If \(\mathcal {A}\) is fpr-categorical then \(\mathbf {FPR} (\mathcal {A})\) contains a unique degree. Nonetheless, \(A \simeq _{pr} B\) does not necessarily imply that there exists a fpr isomorphism \(A \rightarrow B\) (it is easy to construct a counter-example).

  3. 3.

    This means that all implications that are shown at the diagram above are proper. Furthermore, these implications (and their transitive closures) are the only implications that hold.

  4. 4.

    A total function g is primitively recursively reducible to a function f (\(g\le _{PR}f\)) if \(g=\Phi ^f\) for some f-primitive recursive schema \(\Phi ^f\). This leads to the definitions of \(g\equiv _{PR}f\) and \(g<_{PR}f\) as well as the notion of primitive recursive (PR-) degree. For a total function f let \(\{\Phi ^f_n\}\) be the Gödel numbering of all f-primitive recursive schemata for functions with one variable. Define the primitive recursive jump \(f'_{PR}\) to be the function \(f'_{PR}(n,x)=\Phi ^f_n(x).\) It is easy to check that \(f\le _{PR}g\implies f'_{PR}\le _{PR}g'_{PR}\) and \(f<_{PR}f'_{PR}.\)

References

  1. Ash, C., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 144. North-Holland Publishing Co., Amsterdam (2000)

    MATH  Google Scholar 

  2. Alaev, P.E.: Existence and uniqueness of structures computable in polynomial time. Algebra Log. 55(1), 72–76 (2016)

    Article  MATH  Google Scholar 

  3. Boone, W.: The word problem. Ann. Math 70, 207–265 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braun, G., Strüngmann, L.: Breaking up finite automata presentable torsion-free abelian groups. Internat. J. Algebra Comput. 21(8), 1463–1472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cenzer, D., Downey, R.G., Remmel, J.B., Uddin, Z.: Space complexity of abelian groups. Arch. Math. Log. 48(1), 115–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cenzer, D., Remmel, J.B.: Polynomial time versus computable boolean algebras. In: Arslanov, M., Lempp, S. (eds.) Recursion Theory and Complexity, Proceedings 1997 Kazan Workshop, pp. 15–53. de Gruyter, Berlin (1999)

    Google Scholar 

  7. Cenzer, D.A., Remmel, J.B.: Polynomial-time versus recursive models. Ann. Pure Appl. Logic 54(1), 17–58 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cenzer, D.A., Remmel, J.B.: Polynomial-time abelian groups. Ann. Pure Appl. Logic 56(1–3), 313–363 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dobritsa, V.: Some constructivizations of abelian groups. Siberian J. Math. 793(24), 167–173 (1983). (in Russian)

    Article  MathSciNet  MATH  Google Scholar 

  10. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston (1992)

    MATH  Google Scholar 

  11. Ershov, Y., Goncharov, S.: Constructive Models. Siberian School of Algebra and Logic. Consultants Bureau, New York (2000)

    Book  MATH  Google Scholar 

  12. Goncharov, S.: The problem of the number of non auto equivalent construc tivizations. Algebra i Logika 19(6), 621–639, 745 (1980)

    Google Scholar 

  13. Goncharov, S.: Countable Boolean Algebras and Decidability. Siberian School of Algebra and Logic. Consultants Bureau, New York (1997)

    MATH  Google Scholar 

  14. Grigorieff, S.: Every recursive linear ordering has a copy in dtime-space(n, log(n)). J. Symb. Log. 55(1), 260–276 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Higman, G.: Subgroups of finitely presented groups. Proc. Roy. Soc. Ser. A 262, 455–475 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hirschfeldt, D.R., Khoussainov, B., Shore, R.A.: A computably categorical structure whose expansion by a constant has infinite computable dimension. J. Symbolic Log. 68(4), 1199–1241 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kalimullin, I., Melnikov, A., Ng, K.M.: Algebraic structures computable without delay (Submitted)

    Google Scholar 

  18. Kalimullin, I., Melnikov, A., Ng, K.M.: Cantor’s back-and-forth method and computability without delay (to appear)

    Google Scholar 

  19. Kalimullin, I., Melnikov, A., Ng, K.M.: The diversity of categoricity without delay. Algebra i Logika (to appear)

    Google Scholar 

  20. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995). doi:10.1007/3-540-60178-3_93

    Chapter  Google Scholar 

  21. Khoussainov, B., Nerode, A.: Open questions in the theory of automatic structures. Bull. EATCS 94, 181–204 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness and limitations. Log. Methods Comput. Sci. 3(2:2), 1–18 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Kristiansen, L.: Papers on Subrecursion Theory, Dr Scient Thesis, Research report 217. Ph.D. thesis, University of Oslo (1996)

    Google Scholar 

  24. Khoussainov, B., Shore, R.A.: Effective model theory: the number of models and their complexity. In: Cooper, S.B., Truss, J.K. (eds.) Models and Computability (Leeds, 1997). London Mathematical Society Lecture Notes, vol. 259, pp. 193–239. Cambridge University Press, Cambridge (1999)

    Chapter  Google Scholar 

  25. LaRoche, P.: Recursively presented boolean algebras. Notices AMS 24, 552–553 (1977)

    Google Scholar 

  26. Macpherson, D.: A survey of homogeneous structures. Discrete Math. 311(15), 1599–1634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Melnikov, A., Montalban, A.: Computable polish group actions (to appear)

    Google Scholar 

  28. Montalbán, A.: A computability theoretic equivalent to Vaught’s conjecture. Adv. Math. 235, 56–73 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Novikov, P.: On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. Steklov 44, 1–143 (1955)

    Google Scholar 

  30. Nies, A., Semukhin, P.: Finite automata presentable abelian groups. In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 422–436. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72734-7_29

    Chapter  Google Scholar 

  31. Nies, A., Thomas, R.M.: FA-presentable groups and rings. J. Algebra 320(2), 569–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nurtazin, A.: Computable classes and algebraic criteria of autostability. Math. Inst. SB USSRAS, Novosibirsk, Summary of Scientific Schools (1974)

    Google Scholar 

  33. Remmel, J.B.: Recursive boolean algebras with recursive atoms. J. Symb. Log. 46(3), 595–616 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smith, R.L.: Two theorems on autostability in p-Groups. In: Lerman, M., Schmerl, J.H., Soare, R.I. (eds.) Logic Year 1979–80. LNM, vol. 859, pp. 302–311. Springer, Heidelberg (1981). doi:10.1007/BFb0090954

    Chapter  Google Scholar 

  35. Tsankov, T.: The additive group of the rationals does not have an automatic presentation. J. Symbolic Log. 76(4), 1341–1351 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Melnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Melnikov, A.G. (2017). Eliminating Unbounded Search in Computable Algebra. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58741-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58740-0

  • Online ISBN: 978-3-319-58741-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics