Skip to main content

The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in \({{\mathsf {T}}}{{\mathsf {C}}}^0\)

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10304))

Included in the following conference series:

Abstract

We show that the conjugacy problem in a wreath product \(A \wr B\) is uniform-\({{\mathsf {T}}}{{\mathsf {C}}}^0\)-Turing-reducible to the conjugacy problem in the factors A and B and the power problem in B. Moreover, if B is torsion free, the power problem for B can be replaced by the slightly weaker cyclic submonoid membership problem for B, which itself turns out to be uniform-\({{\mathsf {T}}}{{\mathsf {C}}}^0\)-Turing-reducible to the conjugacy problem in \(A \wr B\) if A is non-abelian.

Furthermore, under certain natural conditions, we give a uniform \({{\mathsf {T}}}{{\mathsf {C}}}^0\) Turing reduction from the power problem in \(A \wr B\) to the power problems of A and B. Together with our first result, this yields a uniform \({{\mathsf {T}}}{{\mathsf {C}}}^0\) solution to the conjugacy problem in iterated wreath products of abelian groups – and, by the Magnus embedding, also for free solvable groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC\({^1}\). J. Comput. Syst. Sci. 41(3), 274–306 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71(1), 116–144 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diekert, V., Myasnikov, A.G., Weiß, A.: Conjugacy in Baumslag’s Group, generic case complexity, and division in power circuits. In: LATIN Symposium, pp. 1–12 (2014)

    Google Scholar 

  4. Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Complex. Cryptology 1, 199–205 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Gul, F., Sohrabi, M., Ushakov, A.: Magnus embedding and algorithmic properties of groups \(F/N^{(d)}\). ArXiv e-prints, abs/1501.01001, January 2015

    Google Scholar 

  6. Hesse, W.: Division is in uniform TC\({^0}\). In: Orejas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001). doi:10.1007/3-540-48224-5_9

    Chapter  Google Scholar 

  7. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. JCSS 65, 695–716 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Kargapolov, M.I., Remeslennikov, V.N.: The conjugacy problem for free solvable groups. Algebra i Logika Sem. 5(6), 15–25 (1966)

    MathSciNet  MATH  Google Scholar 

  9. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6_10

    Chapter  Google Scholar 

  10. König, D., Lohrey, M.: Evaluating matrix circuits. CoRR, abs/1502.03540 (2015)

    Google Scholar 

  11. Krebs, A., Lange, K., Reifferscheid, S.: Characterizing TC\(^{0}\) in terms of infinite groups. Theory Comput. Syst. 40(4), 303–325 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lange, K.-J., McKenzie, P.: On the complexity of free monoid morphisms. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 247–256. Springer, Heidelberg (1998). doi:10.1007/3-540-49381-6_27

    Chapter  Google Scholar 

  13. Maciel, A., Thérien, D.: Threshold circuits of small majority-depth. Inf. Comput. 146(1), 55–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Magnus, W.: On a theorem of Marshall Hall. Ann. Math. 40, 764–768 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matthews, J.: The conjugacy problem in wreath products and free metabelian groups. Trans. Am. Math Soc. 121, 329–339 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller III, C.F.: On group-theoretic decision problems and their classification, vol. 68. Annals of Mathematics Studies. Princeton University Press (1971)

    Google Scholar 

  17. Myasnikov, A., Roman’kov, V., Ushakov, A., Vershik, A.: The word, geodesic problems in free solvable groups. Trans. Amer. Math. Soc. 362(9), 4655–4682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Myasnikov, A.G., Vassileva, S., Weiß, A.: Log-space complexity of the conjugacy problem in wreath products. Groups Complex. Cryptol. (2017, to appear)

    Google Scholar 

  19. Miasnikov, A., Vassileva, S., Weiß, A.: The conjugacy problem in free solvable groups and wreath product of abelian groups is in TC\(^{0}\). ArXiv e-prints, abs/1612.05954 (2016)

    Google Scholar 

  20. Remeslennikov, V., Sokolov, V.G.: Certain properties of the Magnus embedding. Algebra i logika 9(5), 566–578 (1970)

    Article  MathSciNet  Google Scholar 

  21. Robinson,D.: Parallel Algorithms for Group Word Problems. PhD thesis, University of California, San Diego (1993)

    Google Scholar 

  22. Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl. Algebra Engrg. Comm. Comput. 17, 291–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vassileva, S.: Polynomial time conjugacy in wreath products and free solvable groups. Groups Complex. Cryptol. 3(1), 105–120 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  25. Waack, S.: The parallel complexity of some constructions in combinatorial group theory (abstract). In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 492–498. Springer, Heidelberg (1990). doi:10.1007/BFb0029647

    Chapter  Google Scholar 

  26. Wang, L., Wang, L., Cao, Z., Okamoto, E., Shao, J.: New constructions of public-key encryption schemes from conjugacy search problems. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 1–17. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21518-6_1

    Chapter  Google Scholar 

  27. Weiß, A.: A logspace solution to the word and conjugacy problem of generalized Baumslag-Solitar groups. In: Algebra and computer science, vol. 677. Contemporary Mathematics, pp. 185–212. American Mathematical Society, Providence, RI (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Weiß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Miasnikov, A., Vassileva, S., Weiß, A. (2017). The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in \({{\mathsf {T}}}{{\mathsf {C}}}^0\) . In: Weil, P. (eds) Computer Science – Theory and Applications. CSR 2017. Lecture Notes in Computer Science(), vol 10304. Springer, Cham. https://doi.org/10.1007/978-3-319-58747-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58747-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58746-2

  • Online ISBN: 978-3-319-58747-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics