Skip to main content

Cascade Heap: Towards Time-Optimal Extractions

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10304))

Included in the following conference series:

Abstract

Heaps are well-studied fundamental data structures, having myriads of applications, both theoretical and practical.

We consider the problem of designing a heap with an “optimal” extract-min operation. Assuming an arbitrary linear ordering of keys, a heap with n elements typically takes \(O(\log n)\) time to extract the minimum. Extracting all elements faster is impossible as this would violate the \(\varOmega (n \log n)\) bound for comparison-based sorting. It is known, however, that is takes only \(O(n + k \log k)\) time to sort just k smallest elements out of n given, which prompts that there might be a faster heap, whose extract-min performance depends on the number of elements extracted so far.

In this paper we show that is indeed the case. We present a version of heap that performs insert in O(1) time and takes only \(O(\log ^* n + \log k)\) time to carry out the k-th extraction (where \(\log ^*\) denotes the iterated logarithm). All the above bounds are worst-case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  2. Williams, J.W.J.: Heapsort. Commun. ACM 7, 347–348 (1964)

    Google Scholar 

  3. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  4. Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pp. 52–58, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (1996)

    Google Scholar 

  5. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In: Proceedings of the 16th Annual Symposium on Foundations of Computer Science (SFCS 1975), pp. 75–84, Washington, DC, USA. IEEE Computer Society (1975)

    Google Scholar 

  6. Thorup, M.: On ram priority queues. SIAM J. Comput. 30(1), 86–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Navarro, G., Paredes, R.: On sorting, heaps, and minimum spanning trees. Algorithmica 57(4), 585–620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignat Kolesnichenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Babenko, M., Kolesnichenko, I., Smirnov, I. (2017). Cascade Heap: Towards Time-Optimal Extractions. In: Weil, P. (eds) Computer Science – Theory and Applications. CSR 2017. Lecture Notes in Computer Science(), vol 10304. Springer, Cham. https://doi.org/10.1007/978-3-319-58747-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58747-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58746-2

  • Online ISBN: 978-3-319-58747-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics