Skip to main content

An Optimal Transport-Based Restoration Method for Q-Ball Imaging

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

  • 1458 Accesses

Abstract

We propose a variational approach for edge-preserving total variation (TV)-based regularization of Q-ball data from high angular resolution diffusion imaging (HARDI). While total variation is among the most popular regularizers for variational problems, its application to orientation distribution functions (ODF), as they naturally arise in Q-ball imaging, is not straightforward. We propose to use an extension that specifically takes into account the metric on the underlying orientation space. The key idea is to write the difference quotients in the TV seminorm in terms of the Wasserstein statistical distance from optimal transport. We combine this regularizer with a matching Wasserstein data fidelity term. Using the Kantorovich-Rubinstein duality, the variational model can be formulated as a convex optimization problem that can be solved using a primal-dual algorithm. We demonstrate the effectiveness of the proposed framework on real and synthetic Q-ball data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aganj, I., Lenglet, C., Sapiro, G.: ODF reconstruction in Q-Ball imaging with solid angle consideration. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, ISBI 2009, pp. 1398–1401 (2009)

    Google Scholar 

  2. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  3. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Guo, W., Zeng, Q., Liu, Y.: A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images. Inverse Prob. Imaging 2(2), 205–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, J., Ghosh, A., Jiang, T., Deriche, R.: A Remannian framework for orientation distribution function computing. Med. Image Comput. Comput. Assist. Interv. 2009 12(1), 911–918 (2009)

    Google Scholar 

  6. Delputte, S., Dierckx, H., Fieremans, E., D’Asseler, Y., Achten, R., Lemahieu, I.: Postprocessing of brain white matter fiber orientation distribution functions. In: ISBI 2007, pp. 784–787 (2007)

    Google Scholar 

  7. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)

    Article  Google Scholar 

  8. Ehricke, H.H., Otto, K.M., Klose, U.: Regularization of bending and crossing white matter fibers in MRI Q-ball fields. Magn. Reson. Imaging 29(7), 916–926 (2011)

    Article  Google Scholar 

  9. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I., Contributors, D.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinf. 8(8), 1–17 (2014)

    Google Scholar 

  10. Goh, A., Lenglet, C., Thompson, P., Vidal, R.: A nonparametric Riemannian framework for processing High Angular Resolution Diffusion Images (HARDI). In: CVPR 2009, pp. 2496–2503 (2009)

    Google Scholar 

  11. Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry. Neuroimage 56(3), 1181–1201 (2011)

    Article  Google Scholar 

  12. Kantorovich, L.V., Rubinshten, G.Sh.: On a functional space and certain extremum problems. Dokl. Akad. Nauk SSSR 115, 1058–1061 (1957)

    Google Scholar 

  13. Kim, Y., Thompson, P.M., Vese, L.A.: HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Prob. Imaging 4(2), 273–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: 2013 IEEE International Conference on Computer Vision, pp. 2944–2951 (2013)

    Google Scholar 

  15. Lellmann, J., Lorenz, D.A., Schönlieb, C., Valkonen, T.: Imaging with Kantorovich-Rubinstein discrepancy. SIAM J. Imaging Sci. 7(4), 2833–2859 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. McGraw, T., Vemuri, B., Ozarslan, E., Chen, Y., Mareci, T.: Variational denoising of diffusion weighted MRI. Inverse Prob. Imaging 3(4), 625–648 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ncube, S., Srivastava, A.: A novel Riemannian metric for analyzing HARDI data. In: Proceedings of the SPIE 7962, Id. 79620Q (2011)

    Google Scholar 

  18. Ouyang, Y., Chen, Y., Wu, Y.: Vectorial total variation regularisation of orientation distribution functions in diffusion weighted MRI. Int. J. Bioinform. Res. Appl. 10(1), 110–127 (2014)

    Article  Google Scholar 

  19. Reisert, M., Kellner, E., Kiselev, V.G.: About the geometry of asymmetric fiber orientation distributions. IEEE Trans. Med. Imaging 31(6), 1240–1249 (2012)

    Article  Google Scholar 

  20. Rokem, A., Yeatman, J., Pestilli, F., Wandell, B.: High angular resolution diffusion MRI. Stanford Digital Repository (2013). http://purl.stanford.edu/yx282xq2090

  21. Srivastava, A., Jermyn, I.H., Joshi, S.H.: Riemannian analysis of probability density functions with applications in vision. In: CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  22. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)

    Article  Google Scholar 

  23. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  24. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    MATH  Google Scholar 

  25. Weinmann, A., Demaret, L., Storath, M.J.: Mumford-Shah and potts regularization for manifold-valued data. J. Math. Imaging Vis. 55, 428 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vogt, T., Lellmann, J. (2017). An Optimal Transport-Based Restoration Method for Q-Ball Imaging. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics