Skip to main content

Graphical Model Parameter Learning by Inverse Linear Programming

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

  • 1423 Accesses

Abstract

We introduce two novel methods for learning parameters of graphical models for image labelling. The following two tasks underline both methods: (i) perturb model parameters based on given features and ground truth labelings, so as to exactly reproduce these labelings as optima of the local polytope relaxation of the labelling problem; (ii) train a predictor for the perturbed model parameters so that improved model parameters can be applied to the labelling of novel data. Our first method implements task (i) by inverse linear programming and task (ii) using a regressor e.g. a Gaussian process. Our second approach simultaneously solves tasks (i) and (ii) in a joint manner, while being restricted to linearly parameterised predictors. Experiments demonstrate the merits of both approaches.

Acknowledgments: VT and FÅ gratefully acknowledge support by the German Science Foundation, grant GRK 1653.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We do not denote the dual variables by \(\nu \), as in the preceding section, due to the slightly different LP formulation (10).

References

  1. Kappes, J., Andres, B., Hamprecht, F., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., Rother, C.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015)

    Article  MathSciNet  Google Scholar 

  2. Wainwright, M.J., Jordan, M.I.: Graphical Models, Exponential Families, and Variational Inference. Now Publishers Inc., Breda (2008)

    MATH  Google Scholar 

  3. Werner, T.: A linear programming approach to max-sum problem: a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1165–1179 (2007)

    Article  Google Scholar 

  4. Zhang, J., Liu, Z.: Calculating some inverse linear programming problems. J. Comput. Appl. Math. 72(2), 261–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ahuja, R., Orlin, J.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492 (1951)

    Google Scholar 

  7. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  8. Kolmogorov, V., Rother, C.: Minimizing non-submodular functions with graph cuts - a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)

    Article  Google Scholar 

  9. Finley, T., Joachims, T.: Training structural SVMs when exact inference is intractable. In: Proceedings of the ICML, pp. 304–311 (2008)

    Google Scholar 

  10. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support Vector Machine Learning for Interdependent and Structured Output Spaces. In: ICML, pp. 104–111 (2004)

    Google Scholar 

  11. d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient methods. SIAM J. Optim. 20(1), 357–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guta, B.: Subgradient optimization methods in integer programming with an application to a radiation therapy problem. Technical report, TU Kaiserslautern (2003)

    Google Scholar 

  13. Camerini, P., Fratta, L., Maffioli, F.: On improving relaxation methods by modified gradient techniques. In: Balinski, M.L., Wolfe, P. (eds.) Nondifferentiable Optimization. Mathematical Programming Studies, vol. 3, pp. 26–34. Springer, Heidelberg (1975)

    Chapter  Google Scholar 

  14. Polyak, B.: Minimization of unsmooth functionals. U.S.S.R. Comput. Math. Math. Phys. 9, 14–29 (1969)

    Article  MATH  Google Scholar 

  15. Bertsekas, D.: Convex Optimization Algorithms. Athena Scientific, Belmont (2015)

    MATH  Google Scholar 

  16. Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up segmentation. In: CVPRW, p. 46 (2004)

    Google Scholar 

  17. Domke, J.: Learning graphical model parameters with approximate marginal inference. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2454–2467 (2013)

    Article  Google Scholar 

  18. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  19. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). doi:10.1007/11744047_45

    Chapter  Google Scholar 

  20. Pele, O., Werman, M.: The quadratic-chi histogram distance family. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 749–762. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9_54

    Chapter  Google Scholar 

  21. Bertelli, L., Yu, T., Vu, D., Gokturk, B.: Kernelized structural SVM learning for supervised object segmentation. In: CVPR, pp. 2153–2160 (2011)

    Google Scholar 

  22. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Trajkovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Trajkovska, V., Swoboda, P., Åström, F., Petra, S. (2017). Graphical Model Parameter Learning by Inverse Linear Programming. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics