Abstract
We introduce two novel methods for learning parameters of graphical models for image labelling. The following two tasks underline both methods: (i) perturb model parameters based on given features and ground truth labelings, so as to exactly reproduce these labelings as optima of the local polytope relaxation of the labelling problem; (ii) train a predictor for the perturbed model parameters so that improved model parameters can be applied to the labelling of novel data. Our first method implements task (i) by inverse linear programming and task (ii) using a regressor e.g. a Gaussian process. Our second approach simultaneously solves tasks (i) and (ii) in a joint manner, while being restricted to linearly parameterised predictors. Experiments demonstrate the merits of both approaches.
Acknowledgments: VT and FÅ gratefully acknowledge support by the German Science Foundation, grant GRK 1653.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We do not denote the dual variables by \(\nu \), as in the preceding section, due to the slightly different LP formulation (10).
References
Kappes, J., Andres, B., Hamprecht, F., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., Rother, C.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015)
Wainwright, M.J., Jordan, M.I.: Graphical Models, Exponential Families, and Variational Inference. Now Publishers Inc., Breda (2008)
Werner, T.: A linear programming approach to max-sum problem: a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1165–1179 (2007)
Zhang, J., Liu, Z.: Calculating some inverse linear programming problems. J. Comput. Appl. Math. 72(2), 261–273 (1996)
Ahuja, R., Orlin, J.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)
Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492 (1951)
Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Kolmogorov, V., Rother, C.: Minimizing non-submodular functions with graph cuts - a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)
Finley, T., Joachims, T.: Training structural SVMs when exact inference is intractable. In: Proceedings of the ICML, pp. 304–311 (2008)
Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support Vector Machine Learning for Interdependent and Structured Output Spaces. In: ICML, pp. 104–111 (2004)
d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient methods. SIAM J. Optim. 20(1), 357–386 (2009)
Guta, B.: Subgradient optimization methods in integer programming with an application to a radiation therapy problem. Technical report, TU Kaiserslautern (2003)
Camerini, P., Fratta, L., Maffioli, F.: On improving relaxation methods by modified gradient techniques. In: Balinski, M.L., Wolfe, P. (eds.) Nondifferentiable Optimization. Mathematical Programming Studies, vol. 3, pp. 26–34. Springer, Heidelberg (1975)
Polyak, B.: Minimization of unsmooth functionals. U.S.S.R. Comput. Math. Math. Phys. 9, 14–29 (1969)
Bertsekas, D.: Convex Optimization Algorithms. Athena Scientific, Belmont (2015)
Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up segmentation. In: CVPRW, p. 46 (2004)
Domke, J.: Learning graphical model parameters with approximate marginal inference. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2454–2467 (2013)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). doi:10.1007/11744047_45
Pele, O., Werman, M.: The quadratic-chi histogram distance family. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 749–762. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9_54
Bertelli, L., Yu, T., Vu, D., Gokturk, B.: Kernelized structural SVM learning for supervised object segmentation. In: CVPR, pp. 2153–2160 (2011)
Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Trajkovska, V., Swoboda, P., Åström, F., Petra, S. (2017). Graphical Model Parameter Learning by Inverse Linear Programming. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-58771-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58770-7
Online ISBN: 978-3-319-58771-4
eBook Packages: Computer ScienceComputer Science (R0)