Skip to main content

Convex Non-Convex Segmentation over Surfaces

  • Conference paper
  • First Online:
  • 1371 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

The paper addresses the segmentation of real-valued functions having values on a complete, connected, 2-manifold embedded in \({{\mathbb {R}}}^3\). We present a three-stage segmentation algorithm that first computes a piecewise smooth multi-phase partition function, then applies clusterization on its values, and finally tracks the boundary curves to obtain the segmentation on the manifold. The proposed formulation is based on the minimization of a Convex Non-Convex functional where an ad-hoc non-convex regularization term improves the treatment of the boundary lengths handled by the \(\ell _1\) norm in [2]. An appropriate numerical scheme based on the Alternating Directions Methods of Multipliers procedure is proposed to efficiently solve the nonlinear optimization problem. Experimental results show the effectiveness of this three-stage procedure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  2. Cai, X.H., Chan, R.H., Zeng, T.Y.: A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Chen, P.Y., Selesnick, I.W.: Group-sparse signal denoising: non-convex regularization, convex optimization. IEEE Trans. Signal Process. 62, 464–3478 (2014)

    MathSciNet  Google Scholar 

  5. Huska, M., Morigi, S.: A meshless strategy for shape diameter analysis. Vis. Comput. 33(3), 303–315 (2017)

    Article  MATH  Google Scholar 

  6. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 666–677. Springer, Cham (2015). doi:10.1007/978-3-319-18461-6_53

    Google Scholar 

  7. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization with parameter selection. J. Math. Imaging Vis. 56(2), 195–220 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lanza, A., Morigi, S., Selesnick, I., Sgallari, F.: Nonconvex nonsmooth optimization via convex-nonconvex majorization-minimization. Numerische Math. (2016). doi:10.1007/s00211-016-0842-x

  9. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nikolova, M.: Estimation of binary images by minimizing convex criteria. In: Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 108–112 (1998)

    Google Scholar 

  11. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tai, X.C., Duan, Y.: Domain decomposition methods with graph cuts algorithms for total variation minimization. Adv. Comput. Math. 36(2), 175–199 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, C., Zhang, J., Duan, Y., Tai, X.-C.: Augmented Lagrangian method for total variation based image restoration and segmentation over triangulated surfaces. J. Sci. Comput. 50(1), 145–166 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, J., Zheng, J., Wu, C., Cai, J.: Variational mesh decomposition. ACM Trans. Graph. 31(3), 21:1–21:14 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “National Group for Scientific Computation (GNCS-INDAM)” and by ex60% project by the University of Bologna “Funds for selected research topics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Morigi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 207 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huska, M., Lanza, A., Morigi, S., Sgallari, F. (2017). Convex Non-Convex Segmentation over Surfaces. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics