Skip to main content

Denoising of Image Gradients and Constrained Total Generalized Variation

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

  • 1395 Accesses

Abstract

We derive a denoising method that uses higher order derivative information. Our method is motivated by work on denoising of normal vectors to the image which then are used for a better denoising of the image itself. We propose to denoise image gradients instead of image normals, since this leads to a convex optimization problem. We show how the denoising of the image gradient and the image itself can be done simultaneously in one optimization problem. It turns out that the resulting problem is similar to total generalized variation denoising, thus shedding more light on the motivation of the total generalized variation penalties. Our approach, however, works with constraints, rather than penalty functionals. As a consequence, there is a natural way to choose one of the parameters of the problems and we motivate a choice rule for the second involved parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lysaker, M., Osher, S., Tai, X.C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Img. Proc. 13(10), 1345–1357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Komander, B., Lorenz, D., Fischer, M., Petz, M., Tutsch, R.: Data fusion of surface normals and point coordinates for deflectometric measurements. J. Sens. Sens. Syst. 3, 281–290 (2014)

    Article  Google Scholar 

  3. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brinkmann, E.-M., Burger, M., Grah, J.: Regularization with sparse vector fields: from image compression to TV-type reconstruction. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 191–202. Springer, Cham (2015). doi:10.1007/978-3-319-18461-6_16

    Google Scholar 

  5. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Article  Google Scholar 

  6. Lorenz, D.A., Worliczek, N.: Necessary conditions for variational regularization schemes. Inverse Prob. 29, 075016 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This material was based upon work supported by the National Science Foundation under Grant DMS-1127914 to the Statistical and Applied Mathematical Sciences Institute. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Komander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Komander, B., Lorenz, D.A. (2017). Denoising of Image Gradients and Constrained Total Generalized Variation. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics