Skip to main content

On a Projected Weiszfeld Algorithm

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

  • 1487 Accesses

Abstract

Weiszfeld’s method provides an efficient way for computing the weighted median of anchor points \(p_j \in {\mathbb {R}}^n\), \(j=1,\ldots ,M\), i.e., the minimizer of \(\sum _{j=1}^M w_j \Vert x-p_j\Vert _2\). In certain applications as in unmixing problems it may be required that x lies in addition in a specific set. In other words we have to deal with a constrained median problem. In this paper we are concerned with closed convex sets lying in a hyperplane of \({\mathbb {R}}^n\) as e.g., the linearly transformed probability simplex. We propose a projected version of the Weiszfeld algorithm to find the minimizer of the constrained median problem and prove the convergence of the algorithm. Here the main contribution is the appropriate handling of iterates taking values in the set of anchor points. A first artificial example shows that the model produces promising results in the presence of different kinds of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available from http://speclab.cr.usgs.gov/spectral-lib.html.

References

  1. Andersen, K.D., Christiansen, E., Conn, A.R., Overton, M.L.: An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM J. Sci. Comput. 22(1), 243–262 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990)

    Article  Google Scholar 

  3. Beck, A., Sabach, S.: Weiszfelds method: old and new results. J. Optim. Theory Appl. 164(1), 1–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  5. Brimberg, J.: The Fermat-Weber location problem revisited. Math. Program. 71, 71–76 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Calamai, P.H., Conn, A.R.: A projected Newton method for \(l_p\) norm location problems. Math. Program. 38(1), 75–109 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Prob. 24(6), 065014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karakos, D., Trahanias, P.E.: Generalized multichannel image-filtering structures. IEEE Trans. Image Process. 6(7), 1038–1044 (1997)

    Article  Google Scholar 

  9. Katz, I.N.: Local convergence in Fermat’s problem. Math. Program. 6(1), 89–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keeling, S.L., Kunisch, K.: Robust \(\ell _1\) approaches to computing the geometric median and principal and independent components. J. Math. Imaging Vis. 56(1), 99–124 (2016)

    Article  MATH  Google Scholar 

  11. Kuhn, H.W.: A note on Fermat’s problem. Math. Program. 4, 98–107 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuhn, H.W., Kuenne, R.E.: An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. J. Reg. Sci. 4(2), 21–33 (1962)

    Article  Google Scholar 

  13. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

    Book  MATH  Google Scholar 

  14. Ostresh, L.M.: On the convergence of a class of iterative methods for solving the Weber location problem. Oper. Res. 26(4), 597–609 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Overton, M.L.: A quadratically convergent method for minimizing a sum of Euclidean norms. Math. Program. 27(1), 34–63 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Setzer, S., Steidl, G., Teuber, T.: On vector and matrix median computation. J. Comput. Appl. Math. 236(8), 2200–2222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Torres, G.A.: A Weiszfeld-like algorithm for a Weber location problem constrained to a closed and convex set. arXiv preprint arXiv:1204.1087 (2012)

  18. Trahanias, P.E., Venetsanopoulos, A.N.: Vector directional filters - a new class of multichannel image processing filters. IEEE Trans. Image Process. 2(4), 528–534 (1993)

    Article  Google Scholar 

  19. Vardi, Y., Zhang, C.H.: A modified Weiszfeld algorithm for the Fermat-Weber location. Math. Program. 90, 559–566 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weiszfeld, E.: Sur le point pour lequel les sommes des distances de \(n\) points donnés et minimum. Tôhoku Math. J. 43, 355–386 (1937)

    MATH  Google Scholar 

  21. Welk, M., Weickert, J., Becker, F., Schnörr, C., Feddern, C., Burgeth, B.: Median and related local filters for tensor-valued images. Sig. Process. 87(2), 291–308 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Nimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Neumayer, S., Nimmer, M., Steidl, G., Stephani, H. (2017). On a Projected Weiszfeld Algorithm. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics