Abstract
Weiszfeld’s method provides an efficient way for computing the weighted median of anchor points \(p_j \in {\mathbb {R}}^n\), \(j=1,\ldots ,M\), i.e., the minimizer of \(\sum _{j=1}^M w_j \Vert x-p_j\Vert _2\). In certain applications as in unmixing problems it may be required that x lies in addition in a specific set. In other words we have to deal with a constrained median problem. In this paper we are concerned with closed convex sets lying in a hyperplane of \({\mathbb {R}}^n\) as e.g., the linearly transformed probability simplex. We propose a projected version of the Weiszfeld algorithm to find the minimizer of the constrained median problem and prove the convergence of the algorithm. Here the main contribution is the appropriate handling of iterates taking values in the set of anchor points. A first artificial example shows that the model produces promising results in the presence of different kinds of noise.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available from http://speclab.cr.usgs.gov/spectral-lib.html.
References
Andersen, K.D., Christiansen, E., Conn, A.R., Overton, M.L.: An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM J. Sci. Comput. 22(1), 243–262 (2000)
Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990)
Beck, A., Sabach, S.: Weiszfelds method: old and new results. J. Optim. Theory Appl. 164(1), 1–40 (2015)
Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)
Brimberg, J.: The Fermat-Weber location problem revisited. Math. Program. 71, 71–76 (1995)
Calamai, P.H., Conn, A.R.: A projected Newton method for \(l_p\) norm location problems. Math. Program. 38(1), 75–109 (1987)
Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Prob. 24(6), 065014 (2008)
Karakos, D., Trahanias, P.E.: Generalized multichannel image-filtering structures. IEEE Trans. Image Process. 6(7), 1038–1044 (1997)
Katz, I.N.: Local convergence in Fermat’s problem. Math. Program. 6(1), 89–104 (1974)
Keeling, S.L., Kunisch, K.: Robust \(\ell _1\) approaches to computing the geometric median and principal and independent components. J. Math. Imaging Vis. 56(1), 99–124 (2016)
Kuhn, H.W.: A note on Fermat’s problem. Math. Program. 4, 98–107 (1973)
Kuhn, H.W., Kuenne, R.E.: An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. J. Reg. Sci. 4(2), 21–33 (1962)
Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)
Ostresh, L.M.: On the convergence of a class of iterative methods for solving the Weber location problem. Oper. Res. 26(4), 597–609 (1978)
Overton, M.L.: A quadratically convergent method for minimizing a sum of Euclidean norms. Math. Program. 27(1), 34–63 (1983)
Setzer, S., Steidl, G., Teuber, T.: On vector and matrix median computation. J. Comput. Appl. Math. 236(8), 2200–2222 (2012)
Torres, G.A.: A Weiszfeld-like algorithm for a Weber location problem constrained to a closed and convex set. arXiv preprint arXiv:1204.1087 (2012)
Trahanias, P.E., Venetsanopoulos, A.N.: Vector directional filters - a new class of multichannel image processing filters. IEEE Trans. Image Process. 2(4), 528–534 (1993)
Vardi, Y., Zhang, C.H.: A modified Weiszfeld algorithm for the Fermat-Weber location. Math. Program. 90, 559–566 (2001)
Weiszfeld, E.: Sur le point pour lequel les sommes des distances de \(n\) points donnés et minimum. Tôhoku Math. J. 43, 355–386 (1937)
Welk, M., Weickert, J., Becker, F., Schnörr, C., Feddern, C., Burgeth, B.: Median and related local filters for tensor-valued images. Sig. Process. 87(2), 291–308 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Neumayer, S., Nimmer, M., Steidl, G., Stephani, H. (2017). On a Projected Weiszfeld Algorithm. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-58771-4_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58770-7
Online ISBN: 978-3-319-58771-4
eBook Packages: Computer ScienceComputer Science (R0)