Skip to main content

Semi-calibrated Near-Light Photometric Stereo

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

We tackle the nonlinear problem of photometric stereo under close-range pointwise sources, when the intensities of the sources are unknown (so-called semi-calibrated setup). A variational approach aiming at robust joint recovery of depth, albedo and intensities is proposed. The resulting nonconvex model is numerically resolved by a provably convergent alternating minimization scheme, where the construction of each subproblem utilizes an iteratively reweighted least-squares approach. In particular, manifold optimization technique is used in solving the corresponding subproblems over the rank-1 matrix manifold. Experiments on real-world datasets demonstrate that the new approach provides not only theoretical guarantees on convergence, but also more accurate geometry.

This work was supported by the ERC Consolidator Grant “3D Reloaded”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19, 139–144 (1980)

    Article  Google Scholar 

  2. Koppal, S.J., Narasimhan, S.G.: Novel depth cues from uncalibrated near-field lighting. In: Proceedings of the ICCV (2007)

    Google Scholar 

  3. Papadhimitri, T., Favaro, P.: Uncalibrated near-light photometric stereo. In: Proceedings of the BMVC (2014)

    Google Scholar 

  4. Liao, J., Buchholz, B., Thiery, J.M., Bauszat, P., Eisemann, E.: Indoor scene reconstruction using near-light photometric stereo. IEEE Trans. Image Process. 26, 1089–1101 (2017)

    Article  Google Scholar 

  5. Nie, Y., Song, Z., Ji, M., Zhu, L.: A novel calibration method for the photometric stereo system with non-isotropic LED lamps. In: Proceedings of the RCAR (2016)

    Google Scholar 

  6. Cho, D., Matsushita, Y., Tai, Y.-W., Kweon, I.: Photometric stereo under non-uniform light intensities and exposures. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 170–186. Springer, Cham (2016). doi:10.1007/978-3-319-46475-6_11

    Chapter  Google Scholar 

  7. Quéau, Y., Wu, T., Lauze, F., Durou, J.D., Cremers, D.: A non-convex variational approach to photometric stereo under inaccurate lighting. In: Proceedings of the CVPR (2017)

    Google Scholar 

  8. Xie, W., Dai, C., Wang, C.C.L.: Photometric stereo with near point lighting: a solution by mesh deformation. In: Proceedings of the CVPR (2015)

    Google Scholar 

  9. Mecca, R., Wetzler, A., Bruckstein, A.M., Kimmel, R.: Near field photometric stereo with point light sources. SIAM J. Imaging Sci. 7, 2732–2770 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mecca, R., Quéau, Y., Logothetis, F., Cipolla, R.: A single-lobe photometric stereo approach for heterogeneous material. SIAM J. Imaging Sci. 9, 1858–1888 (2016)

    Article  MathSciNet  Google Scholar 

  11. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  12. Koch, O., Lubich, C.: Dynamical lowrank approximation. SIAM J. Matrix Anal. Appl. 29, 434–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chan, T.F., Mulet, P.: On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM J. Numer. Anal. 36, 354–367 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nikolova, M., Chan, R.H.: The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Trans. Image Process. 16, 1623–1627 (2007)

    Article  MathSciNet  Google Scholar 

  16. Hintermüller, M., Wu, T.: Nonconvex TV\(^q\)-models in image restoration: analysis and a trust-region regularization-based superlinearly convergent solver. SIAM J. Imaging Sci. 6, 1385–1415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hintermüller, M., Wu, T.: A superlinearly convergent \(R\)-regularized Newton scheme for variational models with concave sparsity-promoting priors. Comput. Optim. Appl. 57, 1–25 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvain Quéau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Quéau, Y., Wu, T., Cremers, D. (2017). Semi-calibrated Near-Light Photometric Stereo. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics