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Abstract. We explore the benefits of parallelizing 7 state-of-the-art
string matching algorithms. Using SIMD and multi-threading techniques
we achieve a significant performance improvement of up to 43.3x over
reference implementations and a speedup of up to 16.7x over the string
matching program grep.

We evaluate our implementations on the smart-corpora and the full hu-
man genome data set. We show scalability over number of threads and
impact of pattern length.

1 Introduction

String matching is a fundamental tool in a wide range of practical software.
Molecular biology, data compression and information retrieval all rely on ef-
ficient string matching algorithms on challenging amounts of input data. For
over 35 years string matching algorithms have been studied extensively. Speed
and memory constraints are the crucial attributes of state-of-the-art matching
algorithms.

Parallelization has become an essential part of algorithm design. Multi-thread-
ing, heterogeneous computing and SIMD (single instruction stream, multiple
data stream) instructions are the current tools of the trade. Due to the data-
parallel nature of most string matching algorithms, these techniques can be used
to achieve significant performance gains.

In this paper, we propose parallelization improvements to existing state-of-
the-art string matching algorithms. We explore a chunking approach, partition-
ing the input data and distributing the workload with a thread pool. We utilize
modern SIMD-instructions to improve throughput in computational intensive
situations and optimize data structures for parallel access. Our implementa-
tions are evaluated on the smart-corpora [11] and the human genome1 [20].
To demonstrate the effectiveness of our approach, we compare the runtime of
our implementations with sequential reference implementations provided by the

1 Dec. 2013 (GRCh38/hg38) assembly of the human genome (hg38, GRCh38 Genome
Reference Consortium Human Reference 38 (GCA 000001405.2)).
See http://genome.ucsc.edu/ for details on the data set.



smart-corpora as well as the string matching program grep2 of the GNU/Linux
operating system.

Pattern length and alphabet size influence the effectiveness of different al-
gorithms, choosing the optimal implementation therefore depends on those two
parameters. Our evaluation considers different combinations of pattern length
and alphabet size. When both parameters are known at runtime this information
can be used to choose the optimal algorithm.

2 Problem Definition

We define the problem of string matching as the task of finding a pattern P of
length m = |P | in a text T of length n = |T |. Pattern and text are based on
an alphabet Σ. The results are the absolute positions of every occurrence of P
in T . The input is dynamic, preprocessing of pattern or text have to take place
at runtime. Only exact matches are returned, approximate matches or regular
expression patterns are not considered.

3 Related Work

The introduction of the Knuth-Morris-Pratt [17] and Boyer-Moore [4] algorithms
which are, respectively, the first linear and the first sublinear string matching al-
gorithms, initiated the ongoing search for ever faster matching approaches. Both
of these inspired many variations. Prominent examples are Horspool [15] and
QuickSearch [25], simplifying variations of Boyer-Moore, which have proven to
be efficient in practice. The Rabin-Karp [16] algorithm is an alternative solution
to the string matching problem, testing for matches based on hashes computed
from the input text and pattern.

In more recent years, many more variations and combinations of the classical
matching algorithms have been proposed. Faro and Lecroq [11] report on more
than 50 new algorithms that have been published since 2000. One example is
the Average Optimal Shift-Or algorithm by Fredriksson and Grabowski [12],
an extension of the original Shift-Or [2], which leverages bit-parallelism within
pattern and text comparison. The BNDM algorithm by Navarro and Raffinot [23]
is based on the same principle, and combines it with suffix automata to find
matches by efficiently identifying all subpatterns of a word. Another family of
algorithms which relies on finding subpatterns is BOM [1] and its variations(cf.
e.g. [10]).

For a more detailed and more complete overview of recent advances in string
matching algorithms we direct the interested reader to Faro’s and Lecroq’s review
article [11].

Despite the global trend in industry and research to increase performance
by parallelizing algorithms, to the best of our knowledge, only few parallel ap-
proaches to string matching exist, even though efficient theoretical solutions have

2 GNU grep 2.20, Copyright (C) 2014 Free Software Foundation, Inc.
http://www.gnu.org/software/grep/



been proposed: The optimal parallel algorithm for a CREW-PRAM (concurrent-
read, exclusive write parallel random access machine) runs in O(log2 n) [13]. For
a CRCW-PRAM, even a constant time solution has been proposed [14]. There
are, however, no practical implementations available for these theoretical algo-
rithms. Nevertheless, there are several published approaches that in some sense
rely on inherently parallel properties of string comparisons, such as by exploiting
bit-parallelism [5] in comparing strings (cf. e.g. the Shift-Or algorithm [2] and its
derivatives, or the works of Cantone et al. [6] or Peltola and Tarhio [24], among
many others). Faro and Klekci, on the other hand, further increase the benefits
of these approaches by using modern processor’s SIMD extensions ([9], [19]).

Although there is a surprising lack of approaches leveraging classical thread-
ing parallelism, there are some works which explore the benefits provided by
the massive parallel computing power within modern GPUs. Kouzinopoulos and
Margaritis evaluate the performance of GPU implementations of the classical
matching algorithms [18] and report on a possible speedup of more than 10x.
Vasiliadis et al. [7] and Cascarano et al. [26] present solutions for regular ex-
pression matching in GPUs, which is a superset of the string maching problem.
These approaches create finite state machines from the input patterns and ex-
ecute them in parallel on partitioned input data. Another problem related to
string matching is the approximate string matching problem, which allows for
missing some possible matches in exchange for speed. Liu et al. [22] present
GPU-based solutions and report on up to 80x speedups.

4 Implementation

We implement a general chunking approach for all of our string matching imple-
mentations. The initial text T is split into chunks of size s = max(2∗m, sa) where
sa is 4 MiB for the SSEF algorithm and 1 MiB for all other algorithms. A thread
pool runs string matching tasks on these chunks in parallel. The string match-
ing tasks examine an additional overlap of m− 1 characters after each chunk to
ensure matches that cross chunk boundaries are found. This also avoids inter-
chunk synchronization in the matching algorithm. If the text size is not large
enough to create at least one chunk per thread, we reduce the chunk size to
s = n/thread count . To preserve global ordering the matching results are writ-
ten to a synchronized set.

We employ SSE (streaming SIMD extensions) in the appropriate implemen-
tations. We use the SSE instruction set (up to version 4.1), as it is supported by
Intel and AMD CPUs. The resulting bit-parallelism is essential for high through-
put on modern CPU cores.

Our implementations can be found on our project page3. We provide a unified
C++ interface for all discussed algorithms.

The following subsections give a brief overview of the implemented algo-
rithms. Of particular interest are our modifications to the SSEF algorithm. For
a more detailed discussion we refer to the referenced articles.

3 https://code.ipd.kit.edu/pmp/pgrep



4.1 Knuth-Morris-Pratt

The well-known Knuth-Morris-Pratt (KMP) algorithm was first published in
1977 [17]. It uses a preprocessing phase on the pattern to build a partial match
table. This table can be used to skip known matching prefixes after a partial
match was found. Once matched characters are therefore never visited again. The
preprocessing phase runs in O(m) and the actual matching in O(n), resulting in
an asymptotic runtime of O(n+m).

4.2 Shift-Or

The Shift-Or algorithm proposed by Baeza-Yates and Gonnet in 1992 uses effi-
cient bitwise operations [2]. For each character c in the alphabet Σ an occurrence
bit-vector oc is calculated in a preprocessing phase.

oc[i] =

{
1 , if P [i] = c

0 , otherwise

In the matching phase a result bit-vector r is iteratively and-combined with the
occurrence vector of the current character. Vector r is then bit-shifted by one
position and incremented by one. A match is found when r[m] = 1. We use
a word size of 64 bit for the bit-vectors. The runtime is deterministic and in
O(n ∗m).

4.3 Hash3

Lecroq’s Hashq algorithm from 2007 [21] is based on hash values for q-grams. The
preprocessing phase computes a shift table for each hashed q-gram in the pattern.
The search algorithm then hashes sub-strings of length q and skips characters
according to the precomputed shift table. Potential matches are checked naively.
Choosing q = 3 promises the best results for medium length patterns. Hash3
requires a minimum pattern length of m = 3.

4.4 SSEF

The SSEF algorithm [19] precomputes 65536 filter lists based on the kth bit of
each character on the pattern. These filters are then applied efficiently, utilizing
SSE instructions, on shifting alignments of pattern and text. SSEF is restricted
to patterns with a minimum length of m ≥ 32. The worst case runtime is in
O(n∗m). If we consider the probability to filter possible matches, SSEF achieves
an average runtime in O(n ∗m/65536).

In the original SSEF algorithm parameter k has to be specified by the user.
The smart-corpora implementation chooses a fixed value of k = 7. We improved
on this by finding the bit that carries the most information in the pattern. We
count the set bit positions in each character of the pattern and choose the bit



Character
Bits

7 6 5 4 3 2 1

a 1 1 0 0 0 0 1
c 1 1 0 0 0 1 1
a 1 1 0 0 0 0 1
f 1 1 0 0 1 1 0

Ratio 1.00 1.00 0.00 0.00 0.25 0.50 0.75

Table 1: Finding the bit that carries the most information. For the pattern ’acaf’
the second bit is set in 50% of the characters.

that carries the most information, see table 1 for an example. Optimally the kth
bit is set 50% of the time.

A second optimization is the filter list itself. The original algorithm and the
smart-corpora implementation use a linked list and allocate each entry dynami-
cally. The reference performs separate heap allocations for each individual entry.
As the number of entries in this linked list is fixed for a given pattern size, we
only allocate a single chunk of memory. This allows us to use simple offsets (in-
stead of pointers) to address the list entries. Also we minimize the total memory
footprint of the filter list by automatically using the smallest data type possible
to store the offsets inside the list. This has the fortunate side effect of improved
cache locality.

4.5 Variants of the Backward-Oracle-Matching

Faro and Lecroq presented Extended-Backward-Oracle-Matching (EBOM) and
Forward-Simplified-Backward-Nondeterministic-DAWG-Matching (FSBNDM) in
2009 [10]. Both are variants of the Backward-Oracle-Matching algorithm and
based on finite automata.

Extended-Backward-Oracle-Matching
The EBOM algorithm extends Backward-Oracle-Matching with a fast-loop.

The fast-loop technique iterates a matching heuristic in a non-branching cycle.
This is used to quickly locate the last character of the pattern in the currently
observed text window. In each iteration two consecutive characters are handled.
EBOM requires a preprocessing phase in O(|Σ|2).

Forward-Simplified-Backward-Nondeterministic-DAWG-Matching
The FSBNDM algorithm uses bit-parallelism to implement a non-deterministic

forward automaton on the reversed pattern. The preprocessing phase can be
performed in O(|Σ|+m).

4.6 Exact-Packed-String-Matching

Exact-Packed-String-Matching (EPSM) was presented in 2013 by Faro and
Külekci [8]. EPSM makes use of bit-parallelism by packing several characters into



a bit-word and partitioning text T into chunks Ti. These bit-word sized chunks
are compared with a packed pattern bit-word. Shift and bitwise-and operations
are used to efficiently compare text chunks with the pattern. Our implementation
uses SSE registers as 128 bit words. We limit the usage of EPSM to cases with
short patterns (m ≤ 8). Under these restrictions EPSM is very fast and runs in
O(n). The asymptotic runtime for the general case remains O(n ∗m).

5 Evaluation

In the following section we present the evaluation of the performance of our
parallelized string matching algorithms. We show experimental results obtained
from two benchmarks using the smart-corpora [11] and the human genome [20].
The human genome benchmark input text is the assembly of the human genome,
which is 3.1 GB in size and uses an alphabet of four characters. The smart-
corpora benchmark is comprised of seven input texts from the smart-coprora
archive:

– The text of the English King James Bible, containing natural English lan-
guage with a complete alphabet of 63 characters.

– A set of genome sequences for the E. Coli bacterium. The DNA is encoded
over an alphabet of size 4.

– Four protein sequences hi, hs, mj, sc, with an alphabet of 20 characters (19
characters for the hs protein).

– The CIA world fact book. Natural English language with a few special char-
acters. Alphabet size of 94.

For both benchmarks, we generate 10 patterns for every input file of the
lengths 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. The patterns for an input
file are generated by randomly picking sequences of the respective length from
the file, thus ensuring that there actually are matches for every file and pattern.
The benchmark results shown in the remainder of this chapter are averaged
over all 10 patterns for every file and configuration. To assess the benefits of
parallelization, all experiments are conducted using 1,2,4, and 8 threads.

Additionally, we compare the performance results of our implementations
with sequential reference implementations of the respective algorithm provided
by the smart-corpora as well as the string matching program grep of the
GNU/Linux operating system.

Input files are directly mapped into the application’s memory to reduce I/O
latencies. We ensured that input files are completely cached by the operating sys-
tem. To get comparable results we used an equivalent memory-mapping interface
for the smart-corpora algorithms. Memory-mapping is used in grep as well. We
invoke grep with the parameters grep <pattern> <file> -c. To benchmark
the actual string matching we use the additional switch -c to suppresses output
of the individual matches and instead print the count of matching lines. The
runtimes of grep and our implementations thus encompass the matching algo-
rithm including all synchronization but minimize file and screen I/O. To run



the benchmarks we used temci [3], a benchmarking helper tool, in combination
with perf, a tool for profiling with performance counters. All experiments were
performed on an Intel Xeon E5 system, with 4 CPU cores (8 hardware threads)
at 3.7 GHz.

In the following subsection we discuss an excerpt of our result data.

5.1 Results
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Fig. 1: Runtime scalability of six algorithms for 1,2,4, and 8 threads. Human
genome data set, pattern length of 32.

Figure 1 shows the average time to match a pattern of length 32 on the
genome data set for six algorithms on a logarithmic scale. We can observe linear
scalability with increased thread count. Our FSBNDM implementation requires
a minimum of two threads due to space limitations exceeded by the genome data
set and the EPSM algorithm is not applicable due to m > 8. The content of the
patterns has an insignificant impact on performance. The maximum relative
standard deviation over the patterns is 3% with a relative range of 9%.

Figure 2 shows the average absolute runtimes of six algorithms on the smart-
corpora. The algorithms use up to 8 threads. The pattern length is 32. Both
SSEF and Hash3 are consistently fast on all seven texts. The relative performance
between the algorithms is surprisingly stable.

In Figure 3 we see the average performance of seven algorithms over differ-
ent pattern lengths. We use the bible text and our implementations use up to 8
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Fig. 2: Absolute runtimes of six parallelized algorithms for the seven texts of the
smart-corpora. Pattern length is 32.
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threads. Several algorithms are restricted to specific pattern sizes. With increas-
ing pattern length algorithm performance increases as well with the exception
of EPSM which is optimal for m = 2. The maximum relative standard deviation
over the pattern contents is 26%. This increase compared to the genome data set
is explained by the relative small runtime influenced by measuring fluctuations.

To assess the practicality of our implementations we compare our runtimes
against the performance of grep. In Figure 4 we show the relative speedups over
different pattern lengths on the human genome data set on a logarithmic scale.
In the case where we are limited to one thread, we can achieve a performance
increase for pattern lengths between 4 and 128. However grep outperforms our
implementations for patterns with m ≤ 2 or m ≥ 256. If we utilize eight threads
we can achieve significant speedups of up to 16.7x for all patterns with m ≥ 2.
SSEF, EBOM and Hash3 all perform consistently well on this data set.

Figure 5 shows the speedups of our implementations over the reference im-
plementations found in the smart-corpora. The speedups are displayed on a
logarithmic scale. The baseline for each algorithm is the corresponding refer-
ence implementation. In contrast to speedups on the human genome data set,
only the EPSM, KMP and Shift-Or implementations benefit from an increased
thread count on this smaller data set. However our modifications to the SSEF
implementation result in a significant speedup even in the sequential case.

6 Conclusion

We used a chunking approach to parallelize seven state-of-the-art string match-
ing algorithms. We have shown linear scalability on the number of threads for
large input data. We observed the influence of pattern size on string matching
algorithms. For short patterns EPSM and EBOM are the algorithms of choice,
while bigger patterns favor Hash3, SSEF and FSBNDM.

SSEF is consistently fast over different alphabet sizes and the supported
pattern lengths. With our modifications to SSEF we achieved a 43x speedup
over the reference implementation. Compared with grep we achieve significant
speedups in all cases where the pattern has two or more characters. On the
human genome data set the maximal speedup of SSEF compared to grep is 15x.

In the future we plan to explore a heterogeneous approach by distributing
text chunks on CPUs, GPUs and Intel MICs.
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9. Faro, S., Külekci, M.O.: Fast and flexible packed string matching. Journal of Dis-
crete Algorithms 28 (2014)

10. Faro, S., Lecroq, T.: Efficient variants of the backward-oracle-matching algorithm.
International Journal of Foundations of Computer Science 20(06) (2009)

11. Faro, S., Lecroq, T.: The exact online string matching problem: A review of the
most recent results. ACM Computing Surveys 45(2) (2013)

12. Fredriksson, K., Grabowski, S.: Practical and optimal string matching. In: String
Processing and Information Retrieval. Springer (2005)

13. Galil, Z.: Optimal parallel algorithms for string matching. Information and Control
67(1) (1985)

14. Galil, Z.: A Constant-time Optimal Parallel String-matching Algorithm. Journal
of the ACM 42(4) (1995)

15. Horspool, R.N.: Practical fast searching in strings. Software: Practice and Experi-
ence 10(6) (1980)

16. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development 31(2) (1987)

17. Knuth, D.E., Morris, Jr, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
journal on computing 6(2) (1977)

18. Kouzinopoulos, C.S., Margaritis, K.G.: String Matching on a Multicore GPU Using
CUDA. In: 13th Panhellenic Conference on Informatics, 2009. PCI ’09 (2009)
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