Skip to main content

Synchronization Over the Birkhoff Polytope for Multi-graph Matching

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10310))

  • 1308 Accesses

Abstract

In this paper we address the problem of simultaneously matching multiple graphs imposing cyclic or transitive consistency among the correspondences. This is obtained through a synchronization process that projects doubly-stochastic matrices onto a consistent set. We overcome the lack of group structure of the Birkhoff polytope, i.e., the space of doubly-stochastic matrices, by making use the Birkhoff-Von Neumann theorem stating that any doubly-stochastic matrix can be seen as the expectation of a distribution over the permutation matrices, and then cast the synchronization problem as one over the underlying permutations. This allows us to transform any graph-matching algorithm working on the Birkhoff polytope into a multi-graph matching algorithm. We evaluate the performance of two classic graph matching algorithms in their synchronized and un-synchronized versions with a state-of-the-art multi-graph matching approach, showing that synchronization can yield better and more robust matches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 74–81 (2005). http://dx.doi.org/10.1109/ICDM.2005.132

  2. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_36

    Chapter  Google Scholar 

  3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)

    Google Scholar 

  4. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  5. Haussler, D.: Convolution kernels on discrete structures. Technical report UCS-CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA, USA (1999). http://citeseer.ist.psu.edu/haussler99convolution.html

  6. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. 98(8), 4569 (2001)

    Article  Google Scholar 

  7. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  8. Kalapala, V., Sanwalani, V., Moore, C.: The structure of the united states road network. Preprint, University of New Mexico (2003)

    Google Scholar 

  9. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: ICML, pp. 321–328 (2003)

    Google Scholar 

  10. Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching problem by permutation synchronization. Adv. NIPS 2013, 1860–1868 (2013)

    Google Scholar 

  11. Schiavinato, M., Gasparetto, A., Torsello, A.: Transitive assignment kernels for structural classification. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 146–159. Springer, Cham (2015). doi:10.1007/978-3-319-24261-3_12

    Chapter  Google Scholar 

  12. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011). http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#ShervashidzeSLMB11

    MathSciNet  MATH  Google Scholar 

  13. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. Int. J. Comput. Vis. 35(1), 13–32 (1999)

    Article  Google Scholar 

  14. Solé-Ribalta, A., Serratosa, F.: Models and algorithms for computing the common labelling of a set of attributed graphs. Comput. Vis. Image Underst. 115(7), 929–945 (2011)

    Article  MATH  Google Scholar 

  15. Torsello, A.: An importance sampling approach to learning structural representations of shape. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24–26 June 2008, Anchorage, Alaska, USA. IEEE Computer Society (2008). http://dx.doi.org/10.1109/CVPR.2008.4587639

  16. Williams, M.L., Wilson, R.C., Hancock, E.R.: Multiple graph matching with Bayesian inference. Pattern Recogn. Lett. 18, 080 (1997)

    Article  Google Scholar 

  17. Yan, J., Cho, M., Zha, H., Yang, X., Chu, S.M.: A general multi-graph matching approach via graduated consistency-regularized boosting. CoRR abs/1502.05840 (2015). http://arxiv.org/abs/1502.05840

  18. Yan, J., Li, Y., Liu, W., Zha, H., Yang, X., Chu, S.M.: Graduated consistency-regularized optimization for multi-graph matching. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 407–422. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_27

    Chapter  Google Scholar 

  19. Yan, J., Tian, Y., Zha, H., Yang, X., Zhang, Y., Chu, S.M.: Joint optimization for consistent multiple graph matching. In: Proceeding IEEE International Conference on Computer Vision, pp. 1649–1656. IEEE Computer Society (2013)

    Google Scholar 

  20. Yan, J., Wang, J., Zha, H., Yang, X., Chu, S.: Consistency-driven alternating optimization for multigraph matching: a unified approach. IEEE Trans. Image Process. 24(3), 994–1009 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for graph matching. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 329–337. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69905-7_38

    Chapter  Google Scholar 

  22. Zhou, X., Zhu, M., Daniilidis, K.: Multi-image matching via fast alternating minimization. CoRR abs/1505.04845 (2015). http://arxiv.org/abs/1505.04845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Torsello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schiavinato, M., Torsello, A. (2017). Synchronization Over the Birkhoff Polytope for Multi-graph Matching. In: Foggia, P., Liu, CL., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2017. Lecture Notes in Computer Science(), vol 10310. Springer, Cham. https://doi.org/10.1007/978-3-319-58961-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58961-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58960-2

  • Online ISBN: 978-3-319-58961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics