Skip to main content

Cancer Metastasis Detection via Spatially Structured Deep Network

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10265))

Included in the following conference series:

Abstract

Metastasis detection of lymph nodes in Whole-slide Images (WSIs) plays a critical role in the diagnosis of breast cancer. Automatic metastasis detection is a challenging issue due to the large variance of their appearances and the size of WSIs. Recently, deep neural networks have been employed to detect cancer metastases by dividing the WSIs into small image patches. However, most existing works simply treat these patches independently and do not consider the structural information among them. In this paper, we propose a novel deep neural network, namely Spatially Structured Network (Spatio-Net) to tackle the metastasis detection problem in WSIs. By integrating the Convolutional Neural Network (CNN) with the 2D Long-Short Term Memory (2D-LSTM), our Spatio-Net is able to learn the appearances and spatial dependencies of image patches effectively. Specifically, the CNN encodes each image patch into a compact feature vector, and the 2D-LSTM layers provide the classification results (i.e., normal or tumor), considering its dependencies on other relevant image patches. Moreover, a new loss function is designed to constrain the structure of the output labels, which further improves the performance. Finally, the metastasis positions are obtained by locating the regions with high tumor probabilities in the resulting accurate probability map. The proposed method is validated on hundreds of WSIs, and the accuracy is significantly improved, in comparison with a state-of-the-art baseline that does not have the spatial dependency constraint.

B. Kong and X. Wang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://camelyon16.grand-challenge.org/.

  2. 2.

    The published state-of-the-art results for the cancer metastasis detection competition were reported in our chosen baseline [20]. However, the competition was already closed, and the ground truth of the testing data was no longer available, so we were unable to evaluate our method upon the same testing data. Therefore, for fair comparison, we reimplemented the framework of [20] and evaluated all methods with five-fold cross-validation using the same released dataset.

  3. 3.

    Note that we do not exhaustively tune these parameters, since our goal is to show improvement when using the spatially structured constraint under the same framework for fair comparison.

References

  1. Apou, G., Naegel, B., Forestier, G., Feuerhake, F., Wemmert, C.: Efficient region-based classification for whole slide images. In: Battiato, S., Coquillart, S., Pettré, J., Laramee, R.S., Kerren, A., Braz, J. (eds.) VISIGRAPP 2014. CCIS, vol. 550, pp. 239–256. Springer, Cham (2015). doi:10.1007/978-3-319-25117-2_15

    Chapter  Google Scholar 

  2. Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszewski, J.: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 496–499. IEEE (2008)

    Google Scholar 

  3. Geçer, B.: Detection and classification of breast cancer in whole slide histopathology images using deep convolutional networks. Ph.D. thesis, Bilkent University (2016)

    Google Scholar 

  4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016, in preparation). http://www.deeplearningbook.org

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

    Google Scholar 

  8. Howlader, N., Noone, A., Krapcho, M., Garshell, J., Neyman, N., Altekruse, S., Kosary, C., Yu, M., Ruhl, J., Tatalovich, Z., et al.: SEER Cancer Statistics Review, 1975–2010. National Cancer Institute, Bethesda (2013)

    Google Scholar 

  9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  10. Kalchbrenner, N., Danihelka, I., Graves, A.: Grid long short-term memory. arXiv preprint arXiv:1507.01526 (2015)

  11. Kong, B., Zhan, Y., Shin, M., Denny, T., Zhang, S.: Recognizing end-diastole and end-systole frames via deep temporal regression network. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 264–272. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_31

    Chapter  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Liang, X., Shen, X., Feng, J., Lin, L., Yan, S.: Semantic object parsing with graph LSTM. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 125–143. Springer, Cham (2016). doi:10.1007/978-3-319-46448-0_8

    Chapter  Google Scholar 

  14. Liang, X., Shen, X., Xiang, D., Feng, J., Lin, L., Yan, S.: Semantic object parsing with local-global long short-term memory. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3185–3193 (2016)

    Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  16. van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759 (2016)

  17. Peng, Z., Zhang, R., Liang, X., Lin, L.: Geometric scene parsing with hierarchical LSTM. arXiv preprint arXiv:1604.01931 (2016)

  18. Shiraishi, J., Li, Q., Suzuki, K., Engelmann, R., Doi, K.: Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med. Phys. 33(7), 2642–2653 (2006)

    Article  Google Scholar 

  19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  20. Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)

  21. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  22. Zhang, X., Liu, W., Dundar, M., Badve, S., Zhang, S.: Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans. Med. Imaging 34(2), 496–506 (2015)

    Article  Google Scholar 

  23. Zhang, X., Xing, F., Su, H., Yang, L., Zhang, S.: High-throughput histopathological image analysis via robust cell segmentation and hashing. Med. Image Anal. 26(1), 306–315 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Song or Shaoting Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kong, B., Wang, X., Li, Z., Song, Q., Zhang, S. (2017). Cancer Metastasis Detection via Spatially Structured Deep Network. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics