Abstract
Community detection methods have been widely used for studying the modular structure of the brain. However, few of these methods exploit the intrinsic properties of brain networks other than modularity to tackle the pronounced noise in neuroimaging data. We propose a random walker (RW) based approach that reflects how regions of a brain subnetwork tend to be inter-linked by a provincial hub. By using provincial hubs to guide seed setting, RW provides the exact posterior probability of a brain region belonging to each given subnetwork, which mitigates forced hard assignments of brain regions to subnetworks as is the case in most existing methods. We further present an extension that enables multimodal integration for exploiting complementary information from functional Magnetic Resonance Imaging (fMRI) and diffusion MRI (dMRI) data. On synthetic data, our approach achieves higher accuracy in subnetwork extraction than unimodal and existing multimodal approaches. On real data from the Human Connectome Project (HCP), our estimated subnetworks match well with established brain systems and attain higher inter-subject reproducibility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)
Nicolini, C., Bordier, C., Bifone, A.: Community detection in weighted brain connectivity networks beyond the resolution limit. Neuroimage 146, 28–39 (2017)
Taya, F., de Souza, J., Thakor, N.V., Bezerianos, A.: Comparison method for community detection on brain networks from neuroimaging data. Appl. Netw. Sci. 1, 8 (2016)
Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010)
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)
Sporns, O., Betzel, R.F.: Modular brain networks. Ann. Rev. Psychol. 67, 613–640 (2016)
Meunier, D., Lambiotte, R., Fornito, A., Ersche, K.D., Bullmore, E.T.: Hierarchical modularity in human brain functional networks. Front. Neuroinform. 3, 37 (2009)
Meunier, D., Lambiotte, R., Bullmore, E.T.: Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010)
Guimerà , R., Nunes Amaral, L.A.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)
Murphy, K., Birn, R.M., Bandettini, P.: Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359 (2013)
Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson. Med. 45, 770–780 (2001)
Venkataraman, A., Rathi, Y., Kubicki, M., Westin, C.-F., Golland, P.: Joint modeling of anatomical and functional connectivity for population studies. IEEE Trans. Med. Imaging 31, 164–182 (2012)
Ng, B., Varoquaux, G., Poline, J.-B., Thirion, B.: A novel sparse graphical approach for multimodal brain connectivity inference. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 707–714. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_87
Abdelnour, F., Voss, H.U., Raj, A.: Network diffusion accurately models the relationship between structural and functional brain connectivity networks. Neuroimage 90, 335–347 (2014)
Chen, H., Li, K., Zhu, D., Jiang, X., Yuan, Y., Lv, P., Zhang, T., Guo, L., Shen, D., Liu, T.: Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering. IEEE Trans. Med. Imaging 32, 1576–1586 (2013)
Dodero, L., Gozzi, A., Liska, A., Murino, V., Sona, D.: Group-wise functional community detection through joint laplacian diagonalization. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 708–715. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_88
An, M., Ho, H.P., Staib, L., Pelphrey, K., Duncan, J.: Multimodal MRI analysis of brain subnetworks in autism using multi-view EM. In: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, pp. 786–789 (2010)
Wang, B., Jiang, J., Wang, W., Zhou, Z., Tu, Z.: Unsupervised metric fusion by cross diffusion. In: IEEE Conference on Computer Vision and Patter Recognition (2012)
Kumar, A., Daum, H.: Co-regularized multi-view spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1413–1421 (2011)
Yoldemir, B., Ng, B., Abugharbieh, R.: Coupled stable overlapping replicator dynamics for multimodal brain subnetwork identification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) Information Processing in Medical Imaging, pp. 770–781. Springer International Publishing, Cham (2015)
Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1–17 (2006)
Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31, 651–666 (2010)
Grady, L.: Multilabel random walker image segmentation using prior models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 763–770 (2005)
Nicolini, C., Bifone, A.: Modular structure of brain functional networks: breaking the resolution limit by surprise. Sci. Rep. 6, 19250 (2016)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005)
van den Heuvel, M., Mandl, R., Hulshoff Pol, H.: Normalized cut group clustering of resting-state FMRI data. PLoS ONE 3, e2001 (2008)
Johansen-Berg, H., Behrens, T.E.J., Robson, M.D., Drobnjak, I., Rushworth, M.F.S., Brady, J.M., Smith, S.M., Higham, D.J., Matthews, P.M.: Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. Natl. Acad. Sci. U. S. A. 101, 13335–13340 (2004)
Skudlarski, P., Jagannathan, K., Calhoun, V.D., Hampson, M., Skudlarska, B.A., Pearlson, G.: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43, 554–561 (2008)
Wang, C., Ng, B., Abugharbieh, R.: Modularity reinforcement for improving brain subnetwork extraction. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 132–139. Springer, Cham (2016). doi:10.1007/978-3-319-46720-7_16
Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)
Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007)
Neher, P.F., Stieltjes, B., Reisert, M., Reicht, I., Meinzer, H.-P., Fritzsche, K.H.: MITK global tractography. In: Haynor, D.R., Ourselin, S. (eds.) SPIE Medical Imaging, p. 83144D. International Society for Optics and Photonics (2012)
Richiardi, J., Altmann, A., Milazzo, A.C., Chang, C., Chakravarty, M.M., Banaschewski, T., Barker, G.J., Bokde, A.L.W., Bromberg, U., Büchel, C., Conrod, P., Fauth-Bühler, M., Flor, H., Frouin, V., Gallinat, J., Garavan, H., Gowland, P., Heinz, A., Lemaître, H., Mann, K.F., Martinot, J.-L., Nees, F., Paus, T., Pausova, Z., Rietschel, M., Robbins, T.W., Smolka, M.N., Spanagel, R., Ströhle, A., Schumann, G., Hawrylycz, M., Poline, J.-B., Greicius, M.D., Consortium, I.: Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015)
Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)
Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158–165 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wang, C., Ng, B., Abugharbieh, R. (2017). Multimodal Brain Subnetwork Extraction Using Provincial Hub Guided Random Walks. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-59050-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59049-3
Online ISBN: 978-3-319-59050-9
eBook Packages: Computer ScienceComputer Science (R0)