Skip to main content

Constructing Shape Spaces from a Topological Perspective

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Abstract

We consider the task of constructing (metric) shape space(s) from a topological perspective. In particular, we present a generic construction scheme and demonstrate how to apply this scheme when shape is interpreted as the differences that remain after factoring out translation, scaling and rotation. This is achieved by leveraging a recently proposed injective functional transform of 2D/3D (binary) objects, based on persistent homology. The resulting shape space is then equipped with a similarity measure that is (1) by design robust to noise and (2) fulfills all metric axioms. From a practical point of view, analyses of object shape can then be carried out directly on segmented objects obtained from some imaging modality without any preprocessing, such as alignment, smoothing, or landmark selection. We demonstrate the utility of the approach on the problem of distinguishing segmented hippocampi from normal controls vs. patients with Alzheimer’s disease in a challenging setup where volume changes are no longer discriminative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For dimension \(k>0\), we can take the interior of the convex hull of the defining vertices and, for dimension 0, a simplex is mapped to its defining vertex.

  2. 2.

    Available online at https://github.com/DIPHA/dipha.

References

  1. Apostolova, L.G., Green, A.E., Babakchanian, S., Hwang, K.S., Chou, Y.Y., Toga, A.W., Thompson, P.M.: Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment, and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 26(1), 17–27 (2012)

    Article  Google Scholar 

  2. Baker, J.A.: Integration over spheres and the divergence theorem for balls. Am. Math. Mon. 104(1), 36–47 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. Math. Imaging Vis. 50(1), 60–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beentjes, C.H.L.: Quadrature on a Spherical Surface (2015). http://people.maths.ox.ac.uk/beentjes/Essays/QuadratureSphere.pdf

  5. Bookstein, F.: Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1(2), 181–242 (1986)

    Article  MATH  Google Scholar 

  6. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.Y.: Gromov-Hausdorff stable signatures for shapes using persistence. Comput. Graph. Forum 28(5), 1393–1403 (2009)

    Article  Google Scholar 

  8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \(L_p\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley series in Probability and Statistics. Wiley, New York (1998)

    MATH  Google Scholar 

  10. Edelsbrunner, H., Harer, J.L., Topology, C.: An Introduction. American Mathematical Society, Providence (2010)

    Google Scholar 

  11. Heckemann, R.A., Keihaninejad, S., Aljabar, P., Nielsen, C., Gray, K.R., Rueckert, D., Hajnal, J.V., Hammers, A.: Automatic morphometry in Alzheimer’s disease and mild cognitive impairment. Neuroimage 56(4), 2024–2037 (2011)

    Article  Google Scholar 

  12. Hinkle, J., Fletcher, P.T., Joshi, S.: Intrinsic polynomials for regression on Riemannian manifolds. Imaging Vis. 50, 32–52 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S.: Polynomial regression on Riemannian manifolds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 1–14. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_1

    Chapter  Google Scholar 

  14. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16(2), 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: CVPR (2010)

    Google Scholar 

  16. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: CVPR (2014)

    Google Scholar 

  17. MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  18. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Michor, P.W., Mumford, D.B.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8(1), 1–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persistence diagrams. Inverse Probl. 27(12) (2011)

    Google Scholar 

  21. Mumford, D.B.: Mathematical theories of shape: do they model perception? Proc. SPIE 1570, 2–10 (1991)

    Article  Google Scholar 

  22. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pachauri, D., Hinrichs, C., Chung, M.K., Johnson, S.C., Singh, V.: Topology-based kernels with application to inference problems in Alzheimer’s disease. IEEE Trans. Med. Imaging 30(10), 1760–1770 (2011)

    Article  Google Scholar 

  24. Reininghaus, R., Bauer, U., Huber, S., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: CVPR (2015)

    Google Scholar 

  25. Shah, J.: An \(H^2\) Riemannian metric on the space of planar curves modulo similitudes. Adv. Appl. Math. 51(4), 483–506 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Turner, K., Mukherjee, S., Boyer, D.M.: Persistent homology transform for modeling shapes and surfaces. Inf. Inference 3(4), 310–344 (2014)

    Article  MathSciNet  Google Scholar 

  27. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011)

    Article  Google Scholar 

  28. Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. In: Lew, M.S. (ed.) Principles of Visual Information Retrieval, pp. 87–119. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II: Theory, Algorithms, and Applications, pp. 91–106. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques. Pattern Recognit. 15(7), 43–90 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Christoph Hofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hofer, C. et al. (2017). Constructing Shape Spaces from a Topological Perspective. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics