Abstract
In this paper a new hybrid method to determine parameters of time-variant non-linear models of dynamic objects is proposed. This method first uses the State Transition Algorithm to create many local models and then applies genetic programming in order to join and simplify those models. This allows to obtain simply model which is not computationally demanding and has high accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jordan, A.J.: Linearization of non-linear state equation. Bull. Pol. Acad. Sci. Tech. Sci. 54(1), 63–73 (2006)
Bartczuk, Ł.: Gene expression programming in correction modelling of nonlinear dynamic objects. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part I. AISC, vol. 429, pp. 125–134. Springer, Cham (2016). doi:10.1007/978-3-319-28555-9_11
Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 26(3), 603–621 (2016)
Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. J. Artif. Intell. Soft Comput. Res. 5(2), 121–139 (2015)
Bertini, J.R., Nicoletti, M.D.C.: Enhancing constructive neural network performance using functionally expanded input data. J. Artif. Intell. Soft Comput. Res. 6(2), 119–131 (2016)
Caughey, T.K.: Equivalent linearization techniques. J. Acoust. Soc. Am. 35(11), 1706–1711 (1963)
Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Anal. Ser. A: Theor. Methods Appl. 71, 1659–1672 (2009)
Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)
Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer (2017)
Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno. Fuzzy systems, neural networks. In: Proceedings of the 2005 IEEE International Joint Conference on IJCNN 2005, vol. 3, pp. 1764–1769 (2005)
Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)
Freeman, R., Kokotovic, P.V.: State-space and Lyapunov techniques. Springer Science & Business Media, New York (2008)
Korytkowski, M.: Novel visual information indexing in relational databases. In: Integrated Computer-aided Engineering, pp. 1–10 (2016). doi:10.3233/ICA-160534
Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)
Koza, J.R.: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)
Krawiec, K.: Behavioral Program Synthesis with Genetic Programming, vol. 618. Springer, Switzerland (2016)
Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_48
Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 217–232. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_20
Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 247–260. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_23
Nelles, O.: Nonlinear System Identication: From Classical Approaches to Neural Networks and Fuzzy Models. Springer Science & Business Media (2013)
Nonaka, S., Tsujimura, T., Izumi, K.: Gain design of quasi-continuous exponential stabilizing controller for a nonholonomic mobile robot. J. Artif. Intell. Soft Comput. Res. 6(3), 189–201 (2016)
Potter, M.A., Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). doi:10.1007/3-540-58484-6_269
Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.M.: A new mechanism for data visualization with Tsk-Type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)
Przybył, A., Er, M.J.: The idea for the integration of neuro-fuzzy hardware emulators with real-time network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 279–294. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_25
Przybył, A., Er, M.J.: The method of hardware implementation of fuzzy systems on FPGA. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9692, pp. 284–298. Springer, Cham (2016). doi:10.1007/978-3-319-39378-0_25
Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computation Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)
Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)
Rutkowski, L., Przybyl, A., Cpałka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electr. 59(2), 1238–1247 (2012)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13232-2_79
Starczewski, J., Rutkowski, L.: Connectionist structures of Type 2 fuzzy inference systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002). doi:10.1007/3-540-48086-2_70
Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. Adv. Intell. Syst. Comput. 432, 137–146 (2016)
Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. Adv. Intell. Syst. Comput. 432, 147–157 (2016)
Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 232–246. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_21
Zalasiński, M., Cpałka, K., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)
Zhou, X., Yang, C., Gui, W.: Nonlinear system identification and control using state transition algorithm. Appl. Math. Comput. 226, 169–179 (2014)
Zhou, X., Gao, D.Y., Yang, C., Gui, W.: Discrete state transition algorithm for unconstrained integer optimization problems. Neurocomputing 173, 864–874 (2016)
Yin, Z., O’Sullivan, C., Brabazon, A.: An analysis of the performance of genetic programming for realised volatility forecasting. J. Artif. Intell. Soft Comput. Res. 6(3), 155–172 (2016)
Zhou, X., Yang, C., Gui, W.: Initial version of state transition algorithm. In: 2011 Second International Conference on Digital Manufacturing and Automation (ICDMA), pp. 644–647. IEEE (2011)
Acknowledgment
The project was financed by the National Science Center on the basis of the decision number DEC-2012/05/B/ST7/02138.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bartczuk, Ł., Dziwiński, P., Red’ko, V.G. (2017). The Concept on Nonlinear Modelling of Dynamic Objects Based on State Transition Algorithm and Genetic Programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10246. Springer, Cham. https://doi.org/10.1007/978-3-319-59060-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-59060-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59059-2
Online ISBN: 978-3-319-59060-8
eBook Packages: Computer ScienceComputer Science (R0)