Skip to main content

A Method for Design of Hardware Emulators for a Distributed Network Environment

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10246))

Included in the following conference series:

Abstract

This paper describes the method for hardware implementation of the emulator of nonlinear dynamic objects in FPGA technology. In order to ensure high-fidelity of emulation it has been proposed a new architecture of the arithmetic unit used to operations on real numbers in digital systems. The method allows us to obtain high processing performance similar to that obtained in fixed-point systems, while offering a wide range of numbers as in a floating-point notation. Based on this idea it has been proposed a super-scalar architecture of the digital processing unit. The described approach provides powerful processing of a matrix state equation with variable coefficients, which are calculated in real-time by fuzzy systems. Obtained and presented results confirm the high performance of the developed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonio-Mendez, R., de la Cruz-Alejo, J., Peñaloza-Mejia, O.: Fuzzy logic control on FPGA for solar tracking system. multibody mechatronic systems. In: Proceedings of the MUSME Conference, Huatulco, Mexico, vol. 25, pp. 11–21 (2014)

    Google Scholar 

  2. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: A new method for dealing with unbalanced linguistic term set. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 207–212. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_24

    Chapter  Google Scholar 

  3. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: New method for generation Type-2 fuzzy partition for FDT. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6113, pp. 275–280. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13208-7_35

    Chapter  Google Scholar 

  4. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for non-linear correction modelling of dynamic objects with genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 318–329. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_29

    Chapter  Google Scholar 

  5. Bartczuk, Ł., Cpałka, K., Przybył, A.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 26(3), 603–621 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartczuk, Ł., Łapa, K., Koprinkova-Hristova, P.: A new method for generating of fuzzy rules for the nonlinear modelling based on semantic genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 262–278. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_23

    Google Scholar 

  7. Bartczuk, Ł.: Gene expression programming in correction modelling of nonlinear dynamic objects. Adv. Intell. Syst. Comput. 429, 125–134 (2016)

    Google Scholar 

  8. Bartczuk, Ł., Galushkin, A.I.: A new method for generating nonlinear correction models of dynamic objects based on semantic genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 249–261. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_22

    Google Scholar 

  9. Bélanger, J.: Real-time FPGA-based solutions for power electronics and power systems. FPGA-based HIL platform combining performance and flexibility, OPAL-RT Technologies (2014). 2014Q2, http://www.opal-rt.com/sites/default/files/Brochure_eFPGAsim_OPAL-RT(2).pdf

  10. Chen, Q., Abercrombie, R.K., Sheldon, F.T.: Risk assessment for industrial control systems quantifying availability using mean failure Cost (MFC). J. Artif. Intell. Soft Comput. Res. 5(3), 205–220 (2015)

    Article  Google Scholar 

  11. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems, neural networks. In: Proceedings of the 2005 IEEE International Joint Conference on IJCNN 2005, vol. 3, pp. 1764–1769 (2005)

    Google Scholar 

  12. Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 212–219. Springer, Heidelberg (2006). doi:10.1007/11785231_23

    Chapter  Google Scholar 

  13. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  14. Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)

    Article  Google Scholar 

  15. Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer (2017)

    Google Scholar 

  16. Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type kernel regression neural networks in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 47–54. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_6

    Chapter  Google Scholar 

  17. Er, M.J., Duda, P.: On the weak convergence of the orthogonal series-type kernel regresion neural networks in a non-stationary environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 443–450. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31464-3_45

    Chapter  Google Scholar 

  18. Dufour, C., Yamada, T., Imamura, R., Bélanger, J.: FPGA permanent magnet synchronous motor floating-point models with variable-DQ and spatial harmonic finite-element analysis solvers. In: Proceedings of the 2011 14th European Conference on Power Electronics and Applications (EPE-2011), pp. 1–10 (2012)

    Google Scholar 

  19. Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 364–378. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_33

    Chapter  Google Scholar 

  20. Dziwiński, P., Avedyan, E.D.: A new approach for using the fuzzy decision trees for the detection of the significant operating points in the nonlinear modeling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 279–292. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_24

    Google Scholar 

  21. Dziwiński, P., Avedyan, E.D.: A new method of the intelligent modeling of the nonlinear dynamic objects with fuzzy detection of the operating points. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 293–305. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_25

    Google Scholar 

  22. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)

    Google Scholar 

  23. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariate functions. IEEE Trans. Autom. Control 31(8), 785–787 (1986)

    Article  MATH  Google Scholar 

  24. Inaba, Y., Cense, S., Ould Bachir, T., Yamashita, H., Dufour, C.: A dual high-speed PMSM motor drive emulator with finite element analysis on FPGA chip with full fault testing capability. In: Proceedings of the 2011 14th European Conference on Power Electronics and Applications (EPE-2011), pp. 1–10 (2011)

    Google Scholar 

  25. Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the parzen-type kernel regression neural network and order statistics for learning in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 90–98. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_11

    Chapter  Google Scholar 

  26. Korytkowski, M.: Novel visual information indexing in relational databases. Integr. Comput.-Aided Eng. 24(2), 119–128 (2016)

    Article  Google Scholar 

  27. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_48

    Chapter  Google Scholar 

  28. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 217–232. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_20

    Chapter  Google Scholar 

  29. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 247–260. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_23

    Chapter  Google Scholar 

  30. Nonaka, S., Tsujimura, T., Izumi, K.: Gain design of quasi-continuous exponential stabilizing controller for a nonholonomic mobile robot. J. Artif. Intell. Soft Comput. Res. 6(3), 189–201 (2016)

    Article  Google Scholar 

  31. Ould, B.T., Dufour, C., David, J.P., Bélanger, J., Mahseredjian, J.: A high-speed PMSM drive case study. In: Proceedings of Electrimacs (ELECTRIMACS-2011), Cergy-Pontoise, France, pp. 1–6 (2011)

    Google Scholar 

  32. Pamuła, W.: Method of decomposing image processing algorithms for implementation in FPGA (in Polish). Pomiary Automatyka Kontrola 57(6), 648–651 (2011)

    Google Scholar 

  33. Philips Semiconductors: An introduction to very-long instruction word (VLIW) computer architecture, vliw-wp.pdf, pp. 1–11 (2011). 2016Q4

    Google Scholar 

  34. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29350-4_82

    Chapter  Google Scholar 

  35. Przybył, A., Er, M.J.: A new approach to designing of intelligent emulators working in a distributed environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 546–558. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_48

    Google Scholar 

  36. Przybył, A., Er, M.J.: The method of hardware implementation of fuzzy systems on FPGA. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9692, pp. 284–298. Springer, Cham (2016). doi:10.1007/978-3-319-39378-0_25

    Google Scholar 

  37. Przybył, A., Szczypta, J.: Method of evolutionary designing of FPGA-based controllers. Przegląd Elektrotechniczny 7, 174–179 (2016)

    Google Scholar 

  38. Poon, J., Chai, E., Čelanović, I., Genić, A., Adzic, E.: High-fidelity real-time hardware-in-the-loop emulation of PMSM inverter drives. In: Conference: ECCE - Energy Conversion Congress and Exposition, At Denver, CO, USA, pp. 1–6 (2013)

    Google Scholar 

  39. Poplawski, M., Bialko, M.: Implementation of fuzzy logic controller in FPGA circuit for guiding electric wheelchair. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 216–222. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29350-4_26

    Chapter  Google Scholar 

  40. Schulte, T., Kiffe, A., Puschmann, F.: HIL simulation of power electronics and electric drives for automotive applications. Electronics 16(2), 130–135 (2012)

    Google Scholar 

  41. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computation Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)

    Google Scholar 

  42. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  43. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, 18–22 November 2002. CD

    Google Scholar 

  44. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July 2004, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  45. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13232-2_79

    Chapter  Google Scholar 

  46. Rutkowski, L., Przybył, A., Cpałka, K.: Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electr. 59, 1238–1247 (2012)

    Article  Google Scholar 

  47. Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of controllers using selected population based algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 440–454. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_38

    Chapter  Google Scholar 

  48. Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_11

    Chapter  Google Scholar 

  49. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8468, pp. 231–245. Springer, Cham (2014). doi:10.1007/978-3-319-07176-3_21

    Chapter  Google Scholar 

  50. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. Adv. Intell. Syst. Comput. 432, 137–146 (2016)

    Google Scholar 

  51. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification aimed at minimizing the number of global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 218–231. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_20

    Google Scholar 

  52. Xilinx Spartan-6 FPGA User Guides: UG389 v1.5, UG389 v1.2 (2014). 2016Q4, http://www.xilinx.com/support/documentation/user_guides/

Download references

Acknowledgment

The project was financed by the National Science Centre (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Przybył .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Przybył, A., Er, M.J. (2017). A Method for Design of Hardware Emulators for a Distributed Network Environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10246. Springer, Cham. https://doi.org/10.1007/978-3-319-59060-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59060-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59059-2

  • Online ISBN: 978-3-319-59060-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics