Skip to main content

Convolutional Neural Networks for Time Series Classification

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10246))

Included in the following conference series:

Abstract

This article concerns identifying objects generating signals from various sensors. Instead of using traditional hand-made time series features we feed the signals as input channels to a convolutional neural network. The network learned low- and high-level features from data. We describe the process of data preparation, filtering, and the structure of the convolutional network. Experiment results showed that the network was able to learn to recognize objects with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Hamid, O., Mohamed, A., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4277–4280, March 2012

    Google Scholar 

  2. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015)

    Article  Google Scholar 

  3. Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)

    Article  Google Scholar 

  4. Bertini Junior, J.R., Nicoletti, M.D.C.: Enhancing constructive neural network performance using functionally expanded input data. J. Artif. Intell. Soft Comput. Res. 6(2), 119–131 (2016)

    Article  Google Scholar 

  5. Brester, C., Semenkin, E., Sidorov, M.: Multi-objective heuristic feature selection for speech-based multilingual emotion recognition. J. Artif. Intell. Soft Comput. Res. 6(4), 243–253 (2016)

    Article  Google Scholar 

  6. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 160–167. ACM, New York (2008)

    Google Scholar 

  7. Cpalka, K., Zalasinski, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)

    Article  Google Scholar 

  8. Damaševičius, R., Vasiljevas, M., Šalkevičius, J., Woźniak, M.: Human activity recognition in AAL environments using random projections. Comput. Math. Methods Med. 2016 (2016)

    Google Scholar 

  9. Damaševic̆ius, R., Maskeliūnas, R., Venčkauskas, A., Woźniak, M.: Smartphone user identity verification using gait characteristics. Symmetry 8(10), 100:1–100:20 (2016). doi:10.3390/sym8100100

  10. Drozda, P., Gorecki, P., Sopyla, K., Artmiejew, P.: Visual words sequence alignment for image classification. In: 2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing, pp. 397–402, July 2013

    Google Scholar 

  11. Frank, J., Mannor, S., Precup, D.: Activity and gait recognition with time-delay embeddings. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 1581–1586. AAAI Press (2010)

    Google Scholar 

  12. Kobayashi, T., Hasida, K., Otsu, N.: Rotation invariant feature extraction from 3-D acceleration signals. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3684–3687, May 2011

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  14. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)

    Article  Google Scholar 

  16. Nikulin, V.: Prediction of the shoppers loyalty with aggregated data streams. J. Artif. Intell. Soft Comput. Res. 6(2), 69–79 (2016)

    Article  Google Scholar 

  17. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Woźniak, M., Połap, D., Napoli, C., Tramontana, E.: Graphic object feature extraction system based on cuckoo search algorithm. Expert Syst. Appl. 66, 20–31 (2016). doi:10.1016/j.eswa.2016.08.068

    Article  Google Scholar 

  19. Woźniak, M., Połap, D., Nowicki, R.K., Napoli, C., Pappalardo, G., Tramontana, E.: Novel approach toward medical signals classifier. In: IEEE IJCNN 2015–2015 IEEE International Joint Conference on Neural Networks, Proceedings, Killarney, Ireland, 12–17 July 2015, pp. 1924–1930. IEEE (2015). doi:10.1109/IJCNN.2015.7280556

  20. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer, Cham (2014). doi:10.1007/978-3-319-08010-9_33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zȩbik, M., Korytkowski, M., Angryk, R., Scherer, R. (2017). Convolutional Neural Networks for Time Series Classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10246. Springer, Cham. https://doi.org/10.1007/978-3-319-59060-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59060-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59059-2

  • Online ISBN: 978-3-319-59060-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics