Abstract
This paper discusses author profiling of English-language mails and blogs using Classification Restricted Boltzmann Machines. We propose an author profiling framework with no need for handcrafted features and only minor use of text preprocessing and feature engineering. The classifier achieves competitive results when evaluated with the PAN-AP-13 corpus: 36.59% joint accuracy, 57.83% gender accuracy and 59.17% age accuracy. We also examine the relations between discriminative, generative and hybrid training methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)
Koppel, M., Argamon, S., Shimoni, A.R.: Automatically categorizing written texts by author gender. Lit. Linguist. Comput. 17(4), 401–412 (2002)
Koppel, M., Schler, J., Argamon, S.: Computational methods in authorship attribution. J. Am. Soc. Inf. Sci. Technol. 60(1), 9–26 (2009)
Larochelle, H., Bengio, Y.: Classification using discriminative restricted boltzmann machines. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 536–543 (2008)
Larochelle, H., Mandel, M., Pascanu, R., Bengio, Y.: Learning algorithms for the classification restricted boltzmann machine. J. Mach. Learn. Res. 13(1), 643–669 (2012)
Maharjan, S., Shrestha, P., Solorio, T., Hasan, R.: A straightforward author profiling approach in MapReduce. In: Bazzan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp. 95–107. Springer, Cham (2014). doi:10.1007/978-3-319-12027-0_8
Rangel, F., Rosso, P., Koppel, M., Stamatatos, E., Inches, G.: Overview of the Author Profiling Task at PAN 2013. In: Forner, P., Navigli, R., Tufis, D., Ferro, N. (eds.) Working Notes for CLEF 2013 Conference, vol. 1179 (2013)
Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann Machines for collaborative filtering. In: Ghahramani, Z. (ed.) Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 791–798 (2007)
Smolensky, P.: Information processing in dynamical systems: Foundations of harmony theory. In: Rumelhart, D.E., McClelland, J.L., PDP Research Group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, pp. 194–281. MIT Press, Cambridge (1986)
Zheng, Z., Cai, Y., Li, Y.: Oversampling method for imbalanced classification. Comput. Inf. 34(5), 1017–1037 (2016)
Acknowledgments
This research was partly supported by the PL-Grid Infrastructure. The research was also supported by the AGH University of Science and Technology (AGH-UST), grant no. 11.11.230.124 (statutory project).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Antkiewicz, M., Kuta, M., Kitowski, J. (2017). Author Profiling with Classification Restricted Boltzmann Machines. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10245. Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-59063-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59062-2
Online ISBN: 978-3-319-59063-9
eBook Packages: Computer ScienceComputer Science (R0)