Skip to main content

A Method for Nonlinear Fuzzy Modelling Using Population Based Algorithm with Flexibly Selectable Operators

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10245))

Included in the following conference series:

Abstract

In this paper a new method based on a population-based algorithm with flexible selectable operators for nonlinear modeling is proposed. This method enables usage of any types of exploration and exploitation operators, typical for population-based algorithms. Moreover, in proposed approach each solution from population encodes activity and parameters of these operators. Due to this, they can be selected dynamically in the evolution process. Such approach eliminates the need for determining detailed mechanism of the population-based algorithm. For the simulations typical nonlinear modeling benchmarks were used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)

    Article  Google Scholar 

  2. Ali, M., Pant, M., Abraham, A.: Unconventional initialization methods for differential evolution. Appl. Math. Comput. 219(9), 4474–4494 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Almohammadi, K., Hagras, H., Alghazzawi, D., Aldabbagh, G.: Users-centric adaptive learning system based on interval type-2 fuzzy logic for massively crowded E-learning platforms. J. Artif. Intell. Soft Comput. Res. 6(2), 81–101 (2016)

    Article  Google Scholar 

  4. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. IEEE Congr. Evol. Comput. 7, 4661–4666 (2007)

    Google Scholar 

  5. Bartczuk, Ł.: Gene expression programming in correction modelling of nonlinear dynamic objects. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part I. AISC, vol. 429, pp. 125–134. Springer, Cham (2016). doi:10.1007/978-3-319-28555-9_11

    Google Scholar 

  6. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: A new method for dealing with unbalanced linguistic term set. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 207–212. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_24

    Chapter  Google Scholar 

  7. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 169–180. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_16

    Chapter  Google Scholar 

  8. Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. J. Artif. Intell. Soft Comput. Res. 5(2), 121–139 (2015)

    Article  Google Scholar 

  9. Brasileiro, Í., Santos, I., Soares, A., Rabelo, R., Mazullo, F.: Ant colony optimization applied to the problem of choosing the best combination among M combinations of shortest paths in transparent optical networks. J. Artif. Intell. Soft Comput. Res. 6(4), 231–242 (2016)

    Article  Google Scholar 

  10. Brester, C., Semenkin, E., Sidorov, M.: Multi-objective heuristic feature selection for speech-based multilingual emotion recognition. J. Artif. Intell. Soft Comput. Res. 6(4), 243–253 (2016)

    Article  Google Scholar 

  11. Brooks, T.F., Pope, D.S., Marcolini, A.M.: Airfoil self-noise and prediction, Technical report, NASA RP-1218, July 1989

    Google Scholar 

  12. Che, J., Wang, J., Li, K.: A monte carlo based robustness optimization method in new product design process: a case study. Am. J. Ind. Bus. Manage. 4(7), 360–369 (2014)

    Google Scholar 

  13. Cheng, Y.I.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29(6), 474–480 (2007)

    Article  Google Scholar 

  14. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Colchester, K., Hagras, H., Alghazzawi, D.: A survey of artificial intelligence techniques employed for adaptive educational systems within E-learning platforms. J. Artif. Intell. Soft Comput. Res. 7(1), 47–64 (2017)

    Article  Google Scholar 

  16. Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_82

    Chapter  Google Scholar 

  17. Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer, Heidelberg (2017)

    Google Scholar 

  18. Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neuro-computing 135, 203–217

    Google Scholar 

  19. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  20. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  21. Cpałka, K., Rutkowski, L.: Flexible takagi-sugeno fuzzy systems, neural networks. In: Proceedings of the 2005 IEEE International Joint Conference on IJCNN 2005, vol. 3, pp. 1764–1769 (2005)

    Google Scholar 

  22. Duda, P., Jaworski, M., Pietruczuk, L.: On pre-processing algorithms for data stream. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 56–63. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29350-4_7

    Chapter  Google Scholar 

  23. Dziwiński, P., Avedyan, E.D.: A new method of the intelligent modeling of the nonlinear dynamic objects with fuzzy detection of the operating points. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 293–305. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_25

    Google Scholar 

  24. Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8468, pp. 349–362. Springer, Cham (2014). doi:10.1007/978-3-319-07176-3_31

    Chapter  Google Scholar 

  25. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  26. El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5(4), 239–245 (2015)

    Article  Google Scholar 

  27. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73(5), 942–943 (1985)

    Article  Google Scholar 

  28. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Cham (2014). doi:10.1007/978-3-319-06932-6_36

    Chapter  Google Scholar 

  29. Ishibuchi, H., Nakashima, T., Murata, T.: Comparison of the michigan and pittsburgh approaches to the design of fuzzy classification systems. In: Electronics and Communications in Japan (Part III Fundamental Electronic Science), vol. 80, pp. 10–19 (1997)

    Google Scholar 

  30. Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the parzen-type kernel regression neural network and order statistics for learning in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 90–98. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_11

    Chapter  Google Scholar 

  31. Jaworski, M., Pietruczuk, L., Duda, P.: On resources optimization in fuzzy clustering of data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 92–99. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29350-4_11

    Chapter  Google Scholar 

  32. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS, vol. 4529, pp. 789–798. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72950-1_77

    Chapter  Google Scholar 

  33. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  34. Kibler, D., Aha, D.: Instance-based prediction of real-valued attributes. In: Proceedings of the CSCSI (Canadian AI) Conference, vol. 5, pp. 51–57 (1988)

    Google Scholar 

  35. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  36. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification, by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  37. Leon, M., Xiong, N.: Adapting differential evolution algorithms for continuous optimization via greedy adjustment of control parameters. J. Artif. Intell. Soft Comput. Res. 6(2), 103–118 (2016)

    Article  Google Scholar 

  38. Li, X., Er, M.J., Lim, B.S., Zhou, J.H., Gan, O.P., Rutkowski, L.: Fuzzy regression modeling for tool performance prediction and degradation detection. Int. J. Neural Syst. 2005, 405–419 (2010)

    Article  Google Scholar 

  39. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 217–232. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_20

    Chapter  Google Scholar 

  40. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. Artif. Intell. Soft Comput. Res. 9120, 247–260 (2015)

    Article  Google Scholar 

  41. Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–282 (2015)

    Article  MATH  Google Scholar 

  42. Murata, M., Ito, S., Tokuhisa, M., Ma, Q.: Order estimation of Japanese paragraphs by supervised machine learning and various textual features. J. Artif. Intell. Soft Comput. Res. 5(4), 247–255 (2015)

    Article  Google Scholar 

  43. Nguyen, K.P., Fujita, G., Dieu, V.N.: Cuckoo search algorithm for optimal placement and sizing of static var compensator in large-scale power systems. J. Artif. Intell. Soft Comput. Res. 6(2), 59–68 (2016)

    Article  Google Scholar 

  44. Nikulin, V.: Prediction of the shoppers loyalty with aggregated data streams. J. Artif. Intell. Soft Comput. Res. 6(2), 69–79 (2016)

    Article  Google Scholar 

  45. Ortigosa, I., Lopez, R., Garcia, J.: A neural networks approach to residuary resistance of sailing yachts prediction. In: Proceedings of the International Conference on Marine Engineering MARINE (2007)

    Google Scholar 

  46. Quinlan, R.: Combining instance-based and model-based learning. In: Proceedings on the Tenth International Conference of Machine Learning, pp. 236–243 (1993)

    Google Scholar 

  47. Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream data mining? Inf. Sci. 381, 46–54 (2017)

    Article  MathSciNet  Google Scholar 

  48. Przybył, A., Er, M.J.: The idea for the integration of neuro-fuzzy hardware emulators with real-time network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 279–294. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_25

    Chapter  Google Scholar 

  49. Przybył, A., Er, M.J.: A new approach to designing of intelligent emulators working in a distributed environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 546–558. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_48

    Google Scholar 

  50. Rutkowski, L.: On-line identification of time-varying systems by nonparametric techniques. IEEE Trans. Autom. Control 27(1), 228–230 (1982)

    Article  MATH  Google Scholar 

  51. Rutkowski, L.: On nonparametric identification with prediction of time-varying systems. IEEE Trans. Autom. Control 29(1), 58–60 (1984)

    Article  MATH  Google Scholar 

  52. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Syst. Control Lett. 6(1), 33–35 (1985)

    Article  MATH  Google Scholar 

  53. Rutkowski, L.: Real-time identification of time-varying systems by non-parametric algorithms based on parzen kernels. Int. J.Syst.Sci. 16(9), 1123–1130 (1985)

    Article  MATH  Google Scholar 

  54. Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circuits and Syst. 33(8), 812–818 (1986)

    Article  MATH  Google Scholar 

  55. Rutkowski, L.: Application of multiple Fourier-series to identification of multivariable non-stationary systems. Int. J. Syst. Sci. 20(10), 1993–2002 (1989)

    Article  MATH  Google Scholar 

  56. Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Signal Process. 182, 129–137 (1989)

    Article  Google Scholar 

  57. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Signal Process. 41(10), 3062–3065 (1993)

    Article  MATH  Google Scholar 

  58. Rutkowski, L.: Computational Intelligence. Methods and Techniques. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  59. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  60. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computation Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)

    Google Scholar 

  61. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26, 1048–1059 (2015)

    Article  MathSciNet  Google Scholar 

  62. Rutkowski, L., Przybył, A., Cpałka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electron. 59(2), 1238–1247 (2012)

    Article  Google Scholar 

  63. Serdah, A.M., Ashour, W.M., Soft, C.R.: Clustering large-scale data based on modified affinity propagation algorithm. J. Artif. Intell. Soft Comput. Res. 6(1), 23–33 (2016)

    Article  Google Scholar 

  64. Staszewski, P., Woldan, P., Korytkowski, M., Scherer, R., Wang, L.: Query-by-example image retrieval in microsoft sql server. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 746–754. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_66

    Google Scholar 

  65. Sugiyama, H.: Pulsed power network based on decentralized intelligence for reliable and lowloss electrical power distribution. J. Artif. Intell. Soft Comput. Res. 5(2), 97–108 (2015)

    Article  Google Scholar 

  66. Szarek, A., Korytkowski, M., Rutkowski, L., Scherer, R., Szyprowski, J.: Forecasting wear of head and acetabulum in hip joint implant. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 341–346. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29350-4_41

    Chapter  Google Scholar 

  67. Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of controllers using selected population based algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 440–454. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_38

    Chapter  Google Scholar 

  68. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13495-1_44

    Chapter  Google Scholar 

  69. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Buildings 49, 560–567 (2012)

    Article  Google Scholar 

  70. Wang, G., Zhang, S.: ABM with behavioral bias and applications in simulating china stock market. J. Artif. Intell. Soft Comput. Res. 5(4), 257–270 (2015)

    Article  Google Scholar 

  71. Woźniak, M., Gabryel, M., Nowicki, R.K., Nowak, B.A.: An application of firefly algorithm to position traffic in noSQL database systems. In: Kunifuji, S., Papadopoulos, G.A., Skulimowski, A.M.J., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems. AISC, vol. 416, pp. 259–272. Springer, Cham (2016). doi:10.1007/978-3-319-27478-2_18

    Chapter  Google Scholar 

  72. Yang, C., Moi, S., Lin, Y., Chuang, L.: Genetic algorithm combined with a local search method for identifying susceptibility genes. J. Artif. Intell. Soft Comput. Res. 6(3), 203–212 (2016)

    Article  Google Scholar 

  73. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization, NICSO 2010, vol. 284, pp. 65–74. Springer, Heidelberg (2010)

    Google Scholar 

  74. Yin, Z., O’Sullivan, C., Brabazon, A.: An analysis of the performance of genetic programming for realised volatility forecasting. J. Artif. Intell. Soft Comput. Res. 6(3), 155–172 (2016)

    Article  Google Scholar 

  75. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. Adv. Intell. Syst. Comput. 432, 137–146 (2016)

    Google Scholar 

  76. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 147–157. Springer, Cham (2016). doi:10.1007/978-3-319-28567-2_13

    Google Scholar 

  77. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification aimed at minimizing the number of global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 218–231. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_20

    Google Scholar 

Download references

The project was financed by the National Science Centre (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Łapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Łapa, K., Cpałka, K., Wang, L. (2017). A Method for Nonlinear Fuzzy Modelling Using Population Based Algorithm with Flexibly Selectable Operators. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10245. Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59063-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59062-2

  • Online ISBN: 978-3-319-59063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics