Skip to main content

The Study of Architecture MLP with Linear Neurons in Order to Eliminate the “vanishing Gradient” Problem

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10245))

Included in the following conference series:

Abstract

Research in deep neural networks are becoming popular in artificial intelligence. Main reason for training difficulties is the problem of vanishing gradients while number of layers increases. While such networks are very powerful they are difficult in training. The paper discusses capabilities of different neural network architectures and presents the proposition of new multilayer architecture with additional linear neurons, that is much easier to train that traditional MLP network and reduces effect of vanishing gradients. Efficiency of suggested approach has been confirmed by several exeriments.

This work was supported by the National Science Centre, Cracow, Poland under Grant No. 2013/11/B/ST6/01337.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larochelle, H., et al.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10, 1–40 (2009)

    MATH  Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  4. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  5. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  6. Wilamowski, B.M., Bo, W., Korniak, J.: Big data and deep learning. In: 2016 IEEE 20th Jubilee International Conference on Intelligent Engineering Systems (INES). IEEE (2016)

    Google Scholar 

  7. Wilamowski, B.M., Korniak, J.: Learning architectures with enhanced capabilities and easier training. In: 2015 IEEE 19th International Conference on Intelligent Engineering Systems (INES). IEEE (2015)

    Google Scholar 

  8. Rozycki, P., Kolbusz, J., Wilamowski, B.M.: Estimation of deep neural networks capabilities based on a trigonometric approach. In: IEEE 20th International Conference on Intelligent Engineering Systems (INES 2016), Budapest, pp. 30–2, June 2016

    Google Scholar 

  9. Wilamowski, B.M., Yu, H.: Neural network learning without backpropagation. IEEE Trans. Neural Networks 21(11), 1793–1803 (2010)

    Article  Google Scholar 

  10. Hunter, D., Hao, Y., Pukish, M.S., Kolbusz, J., Wilamowski, B.M.: Selection of proper neural network sizes and architectures A comparative study. IEEE Trans. Industr. Inf. 8, 228–240 (2012)

    Article  Google Scholar 

  11. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Unc. Fuzz. Knowl. Based Syst. 06, 107 (1998)

    Article  MATH  Google Scholar 

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS (2010)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV (2015)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backProp. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). doi:10.1007/3-540-49430-8_2

    Chapter  Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  16. He, K., J. Sun, J.: Convolutional neural networks at constrained time cost. In: CVPR (2015)

    Google Scholar 

  17. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arxiv:1505.00387 (2015)

  18. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is dificult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  19. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. arXiv preprint arxiv:1409.5185 (2014)

  20. Rozycki, P., Kolbusz, J., Korostenskyi, R., Wilamowski, B.M.: Estimation of deep neural networks capabilities using polynomial approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 136–147. Springer, Cham (2016). doi:10.1007/978-3-319-39378-0_13

    Google Scholar 

  21. Wilamowski, B.M., Yu, H.: Improved computation for levenberg marquardt training. IEEE Trans. Neural Networks 21(6), 930–937 (2010)

    Article  Google Scholar 

  22. Rozycki, P., Kolbusz, J., Wilamowski, B.M.: Dedicated deep neural network architectures and methods for their training. In: IEEE 19th International Conference on Intelligent Engineering Systems (INES 2015), Bratislava, pp. 73–78, 3–5 September 2015

    Google Scholar 

  23. Hunter, D.: Utilizing Dual Neural Networks as a Tool for Training, Optimization, and Architecture Conversion. Ph.D. thesis, Auburn University (2013)

    Google Scholar 

  24. Wilamowski, B.M., Yu, H.: NNT - Neural Networks Trainer. http://nng.wsiz.rzeszow.pl/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Rozycki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kolbusz, J., Rozycki, P., Wilamowski, B.M. (2017). The Study of Architecture MLP with Linear Neurons in Order to Eliminate the “vanishing Gradient” Problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10245. Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59063-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59062-2

  • Online ISBN: 978-3-319-59063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics