Skip to main content

Event-Triggering Sampling Based Synchronization of Delayed Complex Dynamical Networks: An M-matrix Approach

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10261))

Included in the following conference series:

  • 2540 Accesses

Abstract

In this technical note, the synchronization problem is investigated for delayed complex dynamical networks. A novel distributed event-triggered sampling rule is proposed, i.e., one node can decide its own event time via its own state value and the state values of its neighbor agents as long as the locally-computed error exceeds the given state-dependent threshold. The aim here is to design controllers and some required events such that the considered complex dynamical networks can achieve synchronization. Then the M-matrix method is applied to derive some criteria in the form of eigenvalue-based inequality for achieving the synchronization, and the Zeno behavior can be avoided as well. Finally, a numerical example is presented for demonstrating the availability and effectiveness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelrahim, M., Postoyan, R., Daafouz, J., Nešić, D.: Robust event-triggered output feedback controllers for nonlinear systems. Automatica 75, 96–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dimarogonas, D.V., Frazzoli, E., Johansson, K.H.: Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom. Control 57(5), 1291–1297 (2012)

    Article  MathSciNet  Google Scholar 

  3. Fan, Y., Feng, G., Wang, Y., Song, C.: Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica 49(2), 671–675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Forni, F., Galeani, S., Nešić, D., Zaccarian, L.: Event-triggered transmission for linear control over communication channels. Automatica 50(2), 490–498 (2014)

    Article  MathSciNet  Google Scholar 

  5. Gilli, M.: Strange attractors in delayed cellular neural networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(11), 849–853 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hom, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge UP, New York (1991)

    Google Scholar 

  7. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  8. Khalil, H.K., Grizzle, J.: Nonlinear Systems, vol. 3. Prentice Hall, New Jersey (1996)

    Google Scholar 

  9. Postoyan, R., Bragagnolo, M.C., Galbrun, E., Daafouz, J., Nešić, D., Castelan, E.B.: Event-triggered tracking control of unicycle mobile robots. Automatica 52, 302–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qin, J., Yu, C., Gao, H.: Coordination for linear multiagent systems with dynamic interaction topology in the leader-following framework. IEEE Trans. Ind. Electron. 61(5), 2412–2422 (2014)

    Article  Google Scholar 

  11. Song, Q., Liu, F., Cao, J., Yu, W.: Pinning-controllability analysis of complex networks: an M-matrix approach. IEEE Trans. Circuits Syst. I Regul. Pap. 59(11), 2692–2701 (2012)

    Article  MathSciNet  Google Scholar 

  12. Shen, B., Wang, Z., Liu, X.: Sampled-data synchronization control of dynamical networks with stochastic sampling. IEEE Trans. Automat. Control 57(10), 2644–2650 (2012)

    Article  MathSciNet  Google Scholar 

  13. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automat. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  14. Tang, Y., Gao, H., Zhang, W., Kurths, J.: Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses. Automatica 53, 346–354 (2015)

    Article  MathSciNet  Google Scholar 

  15. Tang, Y., Xing, X., Karimi, H.R., Kocarev, L., Kurths, J.: Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems. IEEE Trans. Ind. Electron. 63(2), 1299–1307 (2016)

    Article  Google Scholar 

  16. Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65(1), 152–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wong, W.K., Zhang, W., Tang, Y., Wu, X.: Stochastic synchronization of complex networks with mixed impulses. IEEE Trans. Circuits Syst. I Regul. Pap. 60(10), 2657–2667 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zhang, W., Tang, Y., Wu, X., Fang, J.A.: Synchronization of nonlinear dynamical networks with heterogeneous impulses. IEEE Trans. Circuits Syst. I Regul. Pap. 61(4), 1220–1228 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (Grant No. 61673176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tang, Y. (2017). Event-Triggering Sampling Based Synchronization of Delayed Complex Dynamical Networks: An M-matrix Approach. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10261. Springer, Cham. https://doi.org/10.1007/978-3-319-59072-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59072-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59071-4

  • Online ISBN: 978-3-319-59072-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics