Skip to main content

Fast Conceptor Classifier in Pre-trained Neural Networks for Visual Recognition

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10262))

Included in the following conference series:

  • 2863 Accesses

Abstract

Training large neural network models from scratch is not feasible due to over-fitting on small datasets and time-consuming on large datasets. Hence, to utilize the feature extracting capacity learned by large models, many investigations have been done on various neural network models. At the classifying stage of those models, they employ either a linear SVM classifier or a Softmax classifier, which is the only trained part of the whole model. In this paper, following this line of work, we propose a classifier based on conceptors called Fast Conceptor Classifier (FCC), which is simple to construct and GPU accelerate. Its evaluations with pre-trained and no fine-tuning neural networks have been investigated on Caltech-101 and Caltech-256 datasets, where it achieves state-of-the-art results with the training time reduced by a factor of 60 on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)

    Google Scholar 

  2. Bruna, J., Mallat, S.: Invariant scattering convolution networks. Pattern Anal. Mach. Intell. IEEE Trans. 35(8), 1872–1886 (2013)

    Article  Google Scholar 

  3. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? Image Process. IEEE Trans. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)

  5. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML, pp. 647–655 (2014)

    Google Scholar 

  6. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

    Article  Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  8. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_23

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  11. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaeger, H.: Controlling recurrent neural networks by conceptors. arXiv preprint arXiv:1403.3369 (2014)

  14. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  18. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  19. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: Proceedings of the 30th International Conference on Machine Learning (ICML-2013), pp. 1058–1066 (2013)

    Google Scholar 

  22. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fok Ying Tung Education Foundation (grant 151068); and National Natural Science Foundation of China (grants 61322203, 61332002). The authors would like to appreciate enormous help from Prof. Dr. Herbert Jaeger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Qian, G., Zhang, L., Zhang, Q. (2017). Fast Conceptor Classifier in Pre-trained Neural Networks for Visual Recognition. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10262. Springer, Cham. https://doi.org/10.1007/978-3-319-59081-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59081-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59080-6

  • Online ISBN: 978-3-319-59081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics