Skip to main content

On Characterization and Decomposition of Isothetic Distance Functions for 2-Manifolds

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10256))

Included in the following conference series:

  • 862 Accesses

Abstract

We introduce in this paper certain interesting characterization of isothetic distance functions in the 3D space. The characterization done by us eventually leads to decomposition of an isothetic distance function for higher-order simplices to that of lower-order ones, which subsequently helps in efficient computation. We show how inter-simplex isothetic distance is a natural choice for determining an appropriate voxel size during the voxelization of a 2-manifold surface, such as the most-commonly used triangle mesh. Preliminary test result have been furnished to demonstrate its merit and aptness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhalla, G., Bhowmick, P.: DIG: Discrete Iso-contour Geodesics for topological analysis of voxelized objects. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 265–276. Springer, Cham (2016). doi:10.1007/978-3-319-39441-1_24

    Google Scholar 

  2. Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesics paths and circles in \(\mathbb{Z}^3\). Theor. Comput. Sci. 605, 146–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brimkov, V.E., Barneva, R.P.: Plane digitization and related combinatorial problems. Discrete Appl. Math. 147, 169–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity–a review. Discrete Appl. Math. 155, 468–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunton, A., Arikan, C.A., Urban, P.: Pushing the limits of 3D color printing: error diffusion with translucent materials. ACM ToG 35(4), 1–13 (2015)

    Article  Google Scholar 

  6. Chandru, V., Monohar, S., Prakash, C.: Voxel-based modeling for layered manifacturing. IEEE Comput. Graph. Appl. 15, 42–47 (1995)

    Article  Google Scholar 

  7. Chen, X., Zhang, H., Lin, J., Hu, R., Lu, L., Huang, Q., Benes, B., Cohen-Or, D., Chen, B.: Dapper: decompose-and-pack for 3D printing. ACM ToG 34(213), 1–12 (2015)

    Google Scholar 

  8. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57(6), 453–461 (1995)

    Article  Google Scholar 

  9. Desimone, J., Ermoshkin, A., Samulski, E.: Method and apparatus for three-dimensional fabrication, US Patent 20140361463 (2014)

    Google Scholar 

  10. Dionne, O., de Lasa, M.: Geodesic voxel binding for production character meshes. In: Proceedings of SCA 2013, pp. 173–180 (2013)

    Google Scholar 

  11. Dumas, J., Lu, A., Lefebvre, S., Wu, J., Dick, C.: By-example synthesis of structurally sound patterns. ACM ToG 34(137), 1–12 (2015)

    Google Scholar 

  12. Fei, Y., Wang, B., Chen, J.: Point-tessellated voxelization. In: Proceedings of Graphics Interface, GI 2012, pp. 9–18 (2012)

    Google Scholar 

  13. Huang, J., Yagel, R., Filippov, V., Kurzion, Y.: An accurate method for voxelizing polygon meshes. In: Proceedings of 1998 IEEE Symposium, VVS 1998, pp. 119–126 (1998)

    Google Scholar 

  14. Kämpe, V., Sintorn, E., Assarsson, U.: High resolution sparse voxel DAGs. ACM ToG 32(101), 1–13 (2013)

    Article  MATH  Google Scholar 

  15. Karabassi, E.A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization algorithm. J. Graph. Tools 4, 5–10 (1999)

    Article  Google Scholar 

  16. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  17. Koa, M.D., Johan, H.: ESLPV: enhanced subsurface light propagation volumes. Vis. Comput. 30, 821–831 (2014)

    Article  Google Scholar 

  18. Lachaud, J.O., Thibert, B.: Properties of Gauss digitized shapes and digital surface integration. JMIV 54(2), 162–180 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laine, S.: A topological approach to voxelization. Comput. Graph. Forum 32, 77–86 (2013)

    Article  Google Scholar 

  20. Laine, S., Karras, T.: Efficient sparse voxel octrees. In: Proceedings of ACM SIGGRAPH Symposium, I3D 2010, pp. 55–63 (2010)

    Google Scholar 

  21. Laine, S.: System, method, and computer program product implementing an algorithm for performing thin voxelization of a three-dimensional model, US Patent 9,245,363 (2016)

    Google Scholar 

  22. Lozano-Durán, A., Borrell, G.: Algorithm 964: an efficient algorithm to compute the genus of discrete surfaces and applications to turbulent flows. ACM Trans. Math. Softw. 42(34), 1–19 (2016)

    Article  MathSciNet  Google Scholar 

  23. Niebner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3d reconstruction at scale using voxel hashing. ACM ToG 32(169), 1–11 (2013)

    Google Scholar 

  24. Pantaleoni, J.: VoxelPipe: a programmable pipeline for 3D voxelization. In: Proceedings of ACM SIGGRAPH Symposium, HPG 2011, pp. 99–106 (2011)

    Google Scholar 

  25. Prakash, C., Manohar, S.: Volume rendering of unstructured grids–a voxelization approach. Comput. Graph. 19, 711–726 (1995)

    Article  Google Scholar 

  26. Schwarz, M., Seidel, H.P.: Fast parallel surface and solid voxelization on GPUs. ACM ToG 29(179), 1–10 (2010)

    Article  Google Scholar 

  27. Sintorn, E., Kämpe, V., Olsson, O., Assarsson, U.: Compact precomputed voxelized shadows. ACM ToG 33(150), 1–8 (2014)

    Article  Google Scholar 

  28. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE TPAMI 29(1), 126–140 (2007)

    Article  Google Scholar 

  29. Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Cham (2014). doi:10.1007/978-3-319-09955-2_28

    Google Scholar 

  30. Vidimče, K., Wang, S.P., Ragan-Kelley, J., Matusik, W.: OpenFab: a programmable pipeline for multi-material fabrication. ACM ToG 32(136), 1–12 (2013)

    Article  Google Scholar 

  31. Wu, J., Dick, C., Westermann, R.: A system for high-resolution topology optimization. IEEE TVCG 22, 1195–1208 (2016)

    Google Scholar 

  32. Wyman, C.: Voxelized shadow volumes. In: Proceedings of ACM SIGGRAPH Symposium, HPG 2011, pp. 33–40 (2011)

    Google Scholar 

  33. Zhang, J.: Speeding up large-scale geospatial polygon rasterization on GPGPUs. In: Proceedings ACM SIGSPATIAL, HPDGIS 2011, pp. 10–17 (2011)

    Google Scholar 

  34. Zhang, L., Chen, W., Ebert, D.S., Peng, Q.: Conservative voxelization. Vis. Comput. 23, 783–792 (2007)

    Article  Google Scholar 

  35. Zhao, S., Hašan, M., Ramamoorthi, R., Bala, K.: Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures. ACM ToG 32 (2013). Article No. 131

    Google Scholar 

  36. Zhou, Y., Sueda, S., Matusik, W., Shamir, A.: Boxelization: folding 3D objects into boxes. ACM ToG 33(71), 1–8 (2014)

    Google Scholar 

  37. Zollhofer, M., Dai, A., Innmann, M., Wu, C., Stamminger, M., Theobalt, C., Niebner, M.: Shading-based refinement on volumetric signed distance functions. ACM ToG 34(96), 1–14 (2015)

    MATH  Google Scholar 

Download references

Acknowledgments

We are thankful to the reviewers for their critical comments and suggestions, which helped us in revising the paper up to its merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bhowmick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bhunre, P.K., Bhowmick, P., Mukhopadhyay, J. (2017). On Characterization and Decomposition of Isothetic Distance Functions for 2-Manifolds. In: Brimkov, V., Barneva, R. (eds) Combinatorial Image Analysis. IWCIA 2017. Lecture Notes in Computer Science(), vol 10256. Springer, Cham. https://doi.org/10.1007/978-3-319-59108-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59108-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59107-0

  • Online ISBN: 978-3-319-59108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics