Skip to main content

A Greedy Algorithm for Reconstructing Binary Matrices with Adjacent 1s

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10256))

Included in the following conference series:

  • 850 Accesses

Abstract

This paper deals with the reconstruction of special cases of binary matrices with adjacent 1s. Each element is horizontally adjacent to at least another element. The projections are the number of elements on each row and column. We give a greedy polynomial time algorithm to reconstruct such matrices when satisfying only the vertical projection. We show also that the reconstruction is NP-complete when fixing the number of sequence of length two and three per row and column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from their horizontal and vertical projections. Theor. Comput. Sci. 155, 321–347 (1996)

    Article  MATH  Google Scholar 

  2. Baumann, J., Kiss, Z., Krimmel, S., Kauba, A., Nagy, A., Rodek, L., Schillinger, S., Stephan, J.: Discrete tomography methods for non-destrictive testing, In: Advances in Discrete Tomography and Its Applications, pp. 303–331. Birkhäuser, Boston (2007)

    Google Scholar 

  3. Brocchi, S., Frosini, A., Picouleau, C.: Reconstruction of binary matrices under neighborhood constraints. Theor. Comput. Sci. 406(1–2), 43–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunetti, S., Costa, M.C., Frosini, A., Jarray, F., Picouleau, C.: Reconstruction of binary matrices under adjacency constraints. In: Advances in Discrete Tomography and Its Applications, pp. 125–150. Birkhäuser, Boston (2007)

    Google Scholar 

  5. Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor. Comput. Sci. 304(1–3), 35–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jarray, F., Costa, M.-C., Picouleau, C.: Approximating hv-convex binary matrices and images from discrete projections. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 413–422. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79126-3_37

    Chapter  Google Scholar 

  7. Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Maurice, N.: Reconstruction of 4- and 8-connected convex discrete sets from row and column projections. In: Linear Algebra and Its Applications, vol. 339, pp. 37–57 (2001)

    Google Scholar 

  8. Costa, M.C., Jarray, F., Picouleau, C.: An acyclic days-off scheduling problem. 4OR 4(1), 73–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costa, M.-C., Jarray, F., Picouleau, C.: Reconstructing an alternate periodical binary matrix from its orthogonal projections. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp. 173–181. Springer, Heidelberg (2005). doi:10.1007/11560586_14

    Chapter  Google Scholar 

  10. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Inf. Process. Lett. 69(6), 283–289 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lungo, A., Frosini, A., Nivat, M., Vuillon, L.: Discrete tomography: reconstruction under periodicity constraints. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 38–56. Springer, Heidelberg (2002). doi:10.1007/3-540-45465-9_5

    Chapter  Google Scholar 

  12. Del Lungo, A., Nivat, M.: Reconstruction of connected sets from two projections. In: Discrete Tomography: Foundations, Algorithms, and Applications, pp. 163–188. Birkhäuser, Boston (1999)

    Google Scholar 

  13. Dürr, C., Guiñez, F., Matamala, M.: Reconstructing 3-colored grids from horizontal and vertical projections Is NP-hard. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 776–787. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04128-0_69

    Chapter  Google Scholar 

  14. Hall, P.: A model for learning human vascular anatomy. In: DIMACS Serie in Discrete Mathematical Problems with Medical Applications, vol. 55, pp. 11–27 (2000)

    Google Scholar 

  15. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  16. Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and its Applications. Birkhäuser, Boston (2007)

    Google Scholar 

  17. Ivring, R.W., Jerrum, M.R.: Three-dimensional data security problems. SIAM J. Comput. 23, 170–184 (1994)

    Article  MathSciNet  Google Scholar 

  18. Jarray, F.: Solving problems of discrete tomography: applications in workforce scheduling. Ph.D. thesis, University of CNAM, Paris (2004)

    Google Scholar 

  19. Jarray, F.: A 4-day or a 3-day workweeks scheduling problem with a given workforce size. Asia Pac. J. Oper. Res. 26(5), 685–696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jarray, F., Wynter, L.: An Optimal Smart Market for the Pricing of Telecommunication Services. Technical report 4310, INRIA, Rocquencourt, France (2001)

    Google Scholar 

  21. Jarray, F., Tlig, G.: A simulated annealing for reconstructing hv-convex binary matrices. Electron. Notes Discrete Math. 36, 447–454 (2010)

    Article  MATH  Google Scholar 

  22. Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial time. Theor. Comput. Sci. 283, 223–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Onnasch, D.G.W., Prause, G.P.M.: Heart chamber reconstruction from biplane angiography. In: Discrete Tomography: Foundations, Algorithms and Applications, pp. 385–403. Birkhäuser, Boston (1999)

    Google Scholar 

  24. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vardi, Y.: Network tomography: estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91(433), 65–377 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, B., Zhang, F.: On the precise number of (0, 1)-matrices in \(U(R, S)\). Discrete Math. 187, 211–220 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projections. Inf. Process. Lett. 77, 225–229 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassen Tlig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jarray, F., Tlig, G. (2017). A Greedy Algorithm for Reconstructing Binary Matrices with Adjacent 1s. In: Brimkov, V., Barneva, R. (eds) Combinatorial Image Analysis. IWCIA 2017. Lecture Notes in Computer Science(), vol 10256. Springer, Cham. https://doi.org/10.1007/978-3-319-59108-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59108-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59107-0

  • Online ISBN: 978-3-319-59108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics