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Abs t r ac t . Earth observation from satellite sensory data pose challeng­
ing problems, where machine learning is currently a key player. In recent 
years, Gaussian Process (GP) regression and other kernel methods have 
excelled in biophysical parameter estimation tasks from space. GP regres­
sion is based on solid Bayesian statistics, and generally yield efficient 
and accurate parameter estimates. However, GPs are typically used for 
inverse modeling based on concurrent observations and in situ measure­
ments only. Very often a forward model encoding the well-understood 
physical relations is available though. In this work, we review three GP 
models that respect and learn the physics of the underlying processes 
in the context of inverse modeling. First, we will introduce a Joint GP 
(JGP) model that combines in situ measurements and simulated data in 
a single GP model. Second, we present a latent force model (LFM) for 
GP modeling that encodes ordinary differential equations to blend data-
driven modeling and physical models of the system. The LFM performs 
multi-output regression, adapts to the signal characteristics, is able to 
cope with missing data in the time series, and provides explicit latent 
functions that allow system analysis and evaluation. Finally, we present 
an Automatic Gaussian Process Emulator (AGAPE) that approximates 
the forward physical model via interpolation, reducing the number of 
necessary nodes. Empirical evidence of the performance of these models 
will be presented through illustrative examples of vegetation monitoring 
and atmospheric modeling. 
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1 Introduction 

Solving inverse problems is a recurrent topic of research in Physics in general, 
and in Earth Observation (EO) in particular. Earth Observation encompasses 
geosciences, climate science and remote sensing. After all, Science is about mak­
ing inferences about physical parameters from sensory data. A very relevant 
inverse problem is that of estimating vegetation properties from remotely sensed 
images. Accurate inverse models help to determine the phenological stage and 
health status (e.g., development, productivity, stress) of crops and forests [12], 
which has important societal, environmental and economical implications. Leaf 
chlorophyll content (CM), leaf area index (LAI), and fractional vegetation cover 
(FVC) are among the most important vegetation parameters to retrieve from 
space observations [15,24]. 

In general, mechanistic models 
implement the laws of Physics and 
allow us to compute the data values 
given a model [21]. This is known as 
the forward problem. In the inverse 
problem, the aim is to reconstruct the 
model from a set of measurements, see 
Fig. 1. Notationally, a forward model 
describing the system is expressed as 
x = g(y,uj), where x is a measure­
ment obtained by the satellite (e.g. 

Fig.l . Forward (solid lines) and inverse radiance); the vector y represents the 
(dashed lines) problems in remote sensing. state of the biophysical variables on 

the Earth (which we desire to infer or 
predict and is often referred to as outputs in the inverse modeling approach); 
ui contains a set of controllable conditions (e.g. wavelengths, viewing direction, 
time, Sun position, and polarization); and g(-) is a function which relates y with 
x. Such a function g is typically considered to be nonlinear, smooth and contin­
uous. Our goal is to obtain an inverse model, /(•) « <?_1(-); parametrized by 9, 
which approximates the biophysical variables y given the data x received by the 
satellite, i.e. y = / (x , 6). Radiative transfer models (RTMs) are typically used 
to implement the forward direction [13,22]. However, inverting RTMs directly 
is very complex because the number of unknowns is generally larger than the 
number of independent radiometric information [14]. Also, estimating physical 
parameters from RTMs is hampered by the presence of high levels of uncertainty 
and noise, primarily associated to atmospheric conditions and sensor calibration. 
This translates into inverse problems where deemed similar spectra may corre­
spond to very diverse solutions. This gives raise to undetermination and ill-posed 
problems. 

Methods for model inversion and parameter retrieval can be roughly sepa­
rated in three main families: statistical, physical and hybrid methods [10]. Sta­
tistical inversion predicts a biogeophysical parameter of interest using a training 
dataset of input-output data pairs coming from concurrent measurements of the 
parameter of interest (e.g. leaf area index -LAI-) and the corresponding satellite 
observations (e.g. reflectances). Statistical methods typically outperform other 



approaches, but ground truth measurements involving a terrestrial campaign are 
necessary. Physical inversion reverses RTMs by searching for similar spectra in 
look-up-tables (LUTs) and assigning the parameter corresponding to the most 
similar observed spectrum. This requires selecting an appropriate cost function, 
and generating a rich, representative LUT from the RTM. The use of RTMs to 
generate data sets is a common practice, and especially convenient because acqui­
sition campaigns are very costly in terms of time, money, and human resources, 
and usually limited in terms of parameter combinations. Finally, hybrid inver­
sion exploits the input-output data generated by RTM simulations and train 
statistical regression models to invert the RTM model. Hybrid models combine 
the flexibility and scalability of machine learning while respecting the physics 
encoded in the RTMs. Currently, kernel machines in general [8], and Bayesian 
non-parametric approaches such as Gaussian Process (GP) regression [19] in 
particular, are among the preferred regression models [9,23]. 

While hybrid inversion is practical when no in situ data is available, intu­
itively it makes sense to let predictions be guided by actual measurements when­
ever they are present. Likewise, when only very few real in situ measurements 
are available, it is sensible to incorporate simulated data from RTMs to properly 
ground the models. This is the first pathway considered in this paper, which 
extends the hybrid inversion by proposing a statistical method that performs 
nonlinear and nonparametric inversion blending both real and simulated data. 
The so-called joint GP (JGP) essentially learns how to trade off noise variance 
in the real and simulated data. 

A second topic covered in this paper follows an alternative pathway to learn 
latent functions that generated the observations using GP models. We introduce 
a latent force model (LFM) for GP modelling [1]. The proposed LFM-GP com­
bines the ordinary differential equations of the forward model (through smooth­
ing kernels) and empirical data (from in situ campaigns). The LFM presented 
here performs multi-output structured regression, adapts to the signal character­
istics, is able to cope with missing data in the time series, and provides explicit 
latent functions that allow system analysis and evaluation. 

Finally, we deal with the important issue of emulation, that is learning surro­
gate GP models to approximate costly RTMs. The proposed Automatic Gaussian 
Process Emulator (AGAPE) methodology combines the interpolation capabil­
ities of Gaussian processes (GPs) with the accurate design of an acquisition 
function that favours sampling in low density regions and flatness of the inter­
polation function. 

2 Gaussian Process Models for Inverse Modeling 

GPs are state-of-the-art tools for regression and function approximation, and 
have been recently shown to excel in biophysical variable retrieval by following 
both statistical [9,23] and hybrid approaches [6,7]. Let us consider a set of n pairs 
of observations or measurements, T>n := {xj,yj}™=1, perturbed by an additive 
independent noise. The input data pairs (X, y) used to fit the inverse machine 
learning model /(•) come from either in situ field campaign data (statistical 



approach) or simulations by means of an RTM (hybrid approach). We assume 
the following model, 

yi = / ( x i ) + e i , ei~N(0,a2
n), (1) 

where / (x) is an unknown latent function, x G Md, and a2
n stands for the noise 

variance. Defining y = [yi , . . . , yn]T and f = [ / (x i ) , . . . , / (x n ) ] T , the conditional 
distribution of y given f becomesp(y\f) = 7V(f, o^I), where I is the nxn identity 
matrix. Now, in the GP approach, we assume that f follows a n-dimensional 
Gaussian distribution f ~ 7V(0, K) [3]. 

The covariance matrix K of this 
distribution is determined by a ker­
nel function with entries Kjj = 
fc(xi;Xj) = exp(-| |xi -Xj| |2/(2cr2)), 
encoding similarity between the input 
points [19]. The intuition here is the 

Fig. 2. Statistical inverse modelling. following: the more similar input i and 
j are, according to some metric, the 

more correlated output i and j ought to be. Thus, the marginal distribution of 
y can be written as 

p(y) = JP(y\f)p(f)dS = Af(0,Cn), 

where Cn = K + <r2I. Now, what we are really interested in is predicting a 
new output y*, given an input x* (Fig. 2). The GP framework handles this by 
constructing a joint distribution over the training and test points, 

where k* = [A;(x*, x i ) , . . . , A;(x*, xn)]T is an n x 1 vector and c* = £;(x*,x*) + <72. 
Then, using standard GP manipulations, we can find the distribution over y* 
conditioned on the training data, which is a normal distribution with predictive 
mean and variance given by 

MGp(x*)=kT(K + a2 l„ ) - 1 y, 

0Gp(x*) = c* - kJ(K + alln)-1^. 

Thus, GPs yield not only predictions I^GP* f°r test data, but also the so-called 
"error-bars", CTGP*, assessing the uncertainty of the mean prediction. The hyper-
parameters 9 = [a, an] to be tuned in the GP determine the width of the squared 
exponential kernel function and the noise on the observations. This can be done 
by marginal likelihood maximization or simple grid search, attempting to mini­
mize the squared prediction errors. 

3 Forward and Inverse Joint G P Models 

Let us assume that the previous dataset T>n is formed by two disjoint sets: one 
set of r real data pairs, T>r = { (XJ ,J / J )}[ = 1 , and one set of s RTM-simulated 

C, kT 
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Fig. 3. Obtained accuracy gains in RMSE of JGP over GP for the different sites, 
campaign dates and simulated-to-real data ratios. 

pairs T>s = {(yj, Xj)}™=r+1, so that n = r + s and T>n = T>r U T>s. In matrix 
form, we have X r G R r x d , y r G R r x l , X s G R s x d and y s G R s x l , containing 
all the inputs and outputs of T>r and T>s, respectively. Finally, the t i x l vector 
y contains all the n outputs, sorted with the real data first, followed by the 
simulated data. Now, we define a different model, where the observation noise 
depends on the origin of the data: a^ for real observations (x$ G T>r) or 0^/7 
for RTM simulations (x$ G T>s), where the parameter 7 > 0 accounts for the 
importance of the two sources of information relative to each other. 

The resulting distribution of y given f is only slightly different from that 
of the regular GP, namely p(y\f) = J\f(f,a^V) where V is an n x n diagonal 
matrix in which the first r diagonal elements are equal to 1 and the remaining 
s are equal to 7~1: V = diag( l , . . . , 1 ,7 _ 1 , . . . , 7 _ 1 ) . The predictive mean and 
variance of a test output y*, conditioned on the training data, then becomes 

MjGP(xH<) = kT(K + a 2 v ) - 1 y , 

Note that when 7 = 1 the standard GP formulation is obtained. Otherwise 7 
acts as an extra regularization term accounting for the relative importance of 
the real and the simulated data points. The hyperparameters of the JGP are 
9 = [<r, <r„,7], which can be selected by maximizing the marginal likelihood of 
the observations as usual in the GP framework [19]. It is important to note that 
hyperparameter fitting should be performed with respect to real data, so that 
the method learns the mapping from real input to output. 

3.1 Experimental Results 

We are concerned with the prediction of leaf area index (LAI) parameter from 
space, a parameter that characterizes plant canopies and is roughly defined as 
the total needle surface area per unit ground area. Non-destructive real LAI 
data were acquired over Elementary Sampling Units (ESUs) within rice fields in 
Spain, Italy and Greece during field campaigns in 2015 and 2016. The temporal 
frequency of the campaigns was approximately 10 days starting from the very 



beginning of rice emergence (early-June) up to the maximum rice green LAI 
development (mid-August). LAI measurements were acquired using a dedicated 
smartphone app (PocketLAI), which uses both the smartphone's accelerometer 
and camera to acquire images at 57.5° below the canopy and computes LAI 
through an internal segmentation algorithm [7]. The center of the ESU was 
geo-located for later matching and association of the mean LAI estimate with 
the corresponding satellite spectra. We used Landsat 8 surface reflectance data 
over each area corresponding to the dates of measurements' acquisition. The 
resulting datasets contain a number of in situ measurements in the range of 70-
300 depending on the country and year. On the other hand, a simulated data 
set of s = 2000 pairs of Landsat 8 spectra and LAI was obtained running the 
PROS AIL RTM in forward mode.1 The leaf and canopy variables as well as 
the soil brightness parameter, were generated following a PROSAIL site-specific 
parameterization to constrain the model to Mediterranean rice areas [6]. 

We assessed the performance of JGP for different amounts of real and sim­
ulated data. The gain in accuracy was measured as the reduction in root mean 
square error (RMSE gain [%] = 100 x (RMSEGP-RMSEjGp)/RMSEGP). We 
evaluated performance in the 6 datasets generated for different countries (SP, 
GR, IT) and years (2015, 2016). Figure3 shows the effect of the ratio between 
simulated and real data points p = s/r on the RMSE gain evaluated using 10-fold 
crossvalidation. When no simulated data is used, the JGP model reduces to the 
standard GP model, but when introducing an amount of PROSAIL-datapoints 
similar to the amount of real datapoints, i.e. p ~ 1, a noticeable gain is for 
datasets gathered in 2016. In the case of the data from Spain, the gain appears 
rather stable (between 6 and 2% in 2015 and 2016 respectively) after reaching 
a ratio of p = 2, indicating what size of the simulated dataset is needed for an 
increase in accuracy. The results for Greece and Italy, however, show that the 
use of simulated data attempting to fill in the under-represented domain of the 
real data, is not always useful. 

4 Inverse Modelling with Latent Force Models 

We are interested in inverse modelling from real in situ data, and to learn not 
only an accurate retrieval model but also about the physical mechanism that 
generated the input-output observed relations without even accessing any RTM, 
see Fig. 4. Here, we assume that our observations correspond simply to the tem­
poral variable, x ~ t, so the latent functions are defined in the time domain, 
frit)- Nevertheless, extension to multidimensional objects such as radiances is 
straighforward by using kernels. Notationally, let us consider a multioutput sce­
nario with Q correlated observed time series, yq(t) for 1 < q < Q, and let 
us assume that we have n samples available for each of these signals, taken 
at sampling points tj, s.t. yq[i] = yqiU) for 1 < i < n. This is the training 
set, which is composed of an input vector, t = [ti, . . . , tn]

T, and an output 
matrix, Y = [yi, . . . , yq] with yq = [yq[l], . . . , yq[n]]T. We aim to build a GP 

1 PROSAIL simulates leaf reflectance for the optical spectrum, from 400 to 2500 nm 
with a 1 nm spectral resolution, as a function of biochemistry and structure of the 
canopy, its leaves, the background soil reflectance and the sun-view geometry. 



model for the Q outputs that can be used to perform inference on the test set: 

t = [Fi, . . . ,Jtm]T and Y = [yi, . . . , yQ] with yq = [yq[l], ..., yq[m]]T and 

yq[m'] = yq(tmi) for test inputs at tmi. 

Formulation. Let us assume tha t a 
set of R independent latent functions 
(LFs), fr(t) with 1 < r < R, are 
responsible for the observed correla­
tion between the outputs . Then, the 
cross-correlation between the outputs 
arises natural ly clS CL result of the cou­
pling between the set of independent 
LFs, instead of being imposed directly 
on the set of outputs . Let us define the 
form of these latent functions and the 
coupling mechanism between them. In 
this work, we model the LFs as zero-
mean Gaussian processes (GPs), and 

the coupling system emerges through a linear convolution operator described by 
an impulse response, hq(t), as follows: 

Fig. 4. Inverse modeling with latent forces. 

Vr,q(t) L,[*]{/r(*)} fr(t)*hq(t) fr(T)hq(t-T)dT. (4) 

where Lq[t] {fr(t)} indicates the linear operator associated to the linear convolu­
tion. The resulting outputs are finally obtained as a linear weighted combination 
of these pseudo-outputs plus an additive white Gaussian noise (AWGN) term: 

Vqi1) = 5 3 Sr,qyr,q(f) + wq(f), (5) 

where Sriq represents the coupling strength between the r - th LF and the q-
th output , and wq(t) ~ J\f(0,r]q) is the AWGN term. In practice, we consider 
only the squared exponential auto-covariance function for the LFs, kfrfr(t' —t) 

oc exp(— l
 2£2 ), where the hyperparameter £r controls the length-scale of the 

process. The smoothing kernel encodes our knowledge about the linear system 
(that relates the unobserved LFs and the outputs) , and can be based on basic 
physical principles of the system at hand (as in [1]) or selected arbitrarily (as in 
[4,11]). In this paper, we consider also the Gaussian smoothing kernel, hq(t) oc 

exp( — ^ 2 ) . Now, since the LFs are zero-mean GPs, the noise is also zero-mean 

and Gaussian, and all the operators involved are linear, the joint LFs-outputs 
process is also a GP. Therefore, the mean function of the </-th output is /xy (t) = 
0, whereas the cross-covariance function between two outputs is 

kypVqVt-jt ) — / j br,p 
r=\ 

Sr,qLp[t}{Lq[t'}{kfrfr(tX)}} r]2
qS[p • q]S[t'-t], (6) 



where the term Lp[t] {Lq[t'] {kfrfr(t,t')}} denotes the application of the convo-
lutional operator twice to the autocorrelation function of the LFs, which results 
in the following double integral: 

Lp[t] {Lq[t'\ {kfrfr{t,t')}} = f f hp(t-T)hq(t'-T') X kfrfr(T,T>)dT>dT. 
Jo Jo 

Finally, the cross-correlation between the LFs and the outputs readily gives 
kfrV (£, t') = SriqLq[t'] {kfrfr (£, t')}, which involves a single one-dimensional inte­
gral already computed in an intermediate step before. All integrals can be solved 
analytically when both the LFs and the smoothing kernel have a Gaussian shape. 

Learning hyperparameters is very challenging through marginal log-
likelihood maximization because of its complicated dependence on hyperparame­
ters 9 = [i/q, lr,a, <rn, rjq]. We propose to solve the problem through a stochastic 
gradient descent technique, the scaled conjugate gradient [18]. Once the hyper­
parameters 9 of the model have been learned, inference proceeds by applying 
standard GP regression formulas [19] (cf. Sect. 2). Now, since the conditional 
PDF is Gaussian, the minimum mean squared error (MMSE) prediction is sim­
ply given by the conditional mean: 

y = ^y|y = KyyKyyY, (7) 

where y = [yj~, . . . , y l ] is the vectorized version of the inferred outputs, 
which can be expressed in matrix form as Y = [yi, . . . , YQ] with yq = [yq[l], 
..., yq[m]]T and yq[m'} = yq(t'm). 

4.1 Experimental Results 

We are concerned about multiple time series of two (related) biophysical para­
meters, LAI and fAPAR (Fraction of Absorbed Photosynthetically Active Radi­
ation), in the locations of the experiments in Sect. 3.1. We focus on a set of rep­
resentative rice pixels of each area, thus allowing us to observe the inter-annual 
variability of rice from 2003 to 2014 at a coarse spatial resolution (2 Km), which 
is useful for regional vegetation modelling. We focus on learning the latent forces 
for the multi-output time series composed of the LAI and fAPAR data for Spain 
and Italy (i.e., the number of outputs is Q = 4) from the beginning of 2003 
until the end of 2013. We use all the LAI data available from the MODIS sensor 
for Spain (N = 506 samples), and the first half (years 2003-2009) of the other 
three time series. The recovered LF (R = 1) and two examples of the modelled 
time series are displayed in Fig. 5. Note that the model has succeeded in cap­
turing the dynamics of the data by using a single LF. Good numerical results 
were obtained: for Spain, we have MSE = 0.1139 and MSE = 0.0080 for LAI 
and fAPAR respectively, whereas for Italy we have MSE = 0.2422 and MSE = 
0.0046, respectively. 

5 Automatic GP Emulation 

Emulation deals with the challenging problem of building statistical models for 
complex physical RTMs. The emulators are also called surrogate or proxy mod­
els, and they try to learn the equations encoded from data. Namely, an emulator 
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Fig. 5. Gap filling example using a single LF (i.e., R = 1). Training used all the LAI 
data from Spain (years 2003-2013) and the first half (years 2003-2009) of the other 
three time series: fAPAR (ES), LAI (IT) and fAPAR (IT). The second half constitutes 
the test set of such time series. Training data (red circles), test data (red dashed line), 
predicted time series (black line) and uncertainty measured by ±2 standard deviations 
about the mean predicted value (gray shaded area). (Color figure online) 

Fig. 6. Scheme of an automatic emulator. 

is a statistical model which tries to reproduce the behavior of a deterministic 
and very costly physical model. Emulators built with GPs are gaining populari ty 
in remote sensing and geosciences, since they allow efficient da ta processing and 
sensitivity analysis [5,9,20]. Here, we are interested in optimizing emulators such 
tha t a minimal number of simulations is run. The technique is called AGAPE 
(automatic Gaussian Process emulator), and is related to some Bayesian opti­
mization and active learning techniques. 

The goal is to interpolate 
a costly function g(y) choosing 
adequately the nodes, in order 
to reduce the error in the inter­
polation with the smallest pos­
sible number of evaluation of 
<?(y). Given an input matr ix 
of nodes (used for the interpo­
lation) at the t - th iterations, 
Y t = [yi • • • y m J , of dimension 

d x mt (where d is the dimension of each yj and mt is the number of points), 
we have a vector of outputs , x t = \x\,... , x m J T , where xt = g(yt) is the esti­
mation of the observations (e.g., radiances) at iteration t G N + of the algo­
ri thm. Figure 6 shows a graphical representation of a generic automatic emula­
tor. At each iteration t one performs an interpolation, <? t(y |Y t ,x t) , followed by 
an optimization step tha t updates the acquisition function, At(y), updates the 
set Y t + i = [ Y t , y m t + i ] adding a new node, set mt <— mt + 1 and t <— t + 1. 
The procedure is repeated until a suitable stopping condition is met, such as a 
certain maximum number of points is included or a desired precision error e is 
achieved, \\gt(y) - ? t - i ( y ) | | < e. 

Formulation, the acquisition function, At(y), encodes useful information for 
proposing new points to build the emulator. At each iteration, a new node is 
added maximizing At(y), i.e., 

y m t + i = a r g m a x A t ( y ) , 



and set Yt+i = [Yt,ym t+i], mt+i = mt + 1. Here, we propose to account for 
both a geometry Gt(y) and a diversity Dt(y), 

My) = [Gt(y)f Dt(y), fit G [0,1], (8) 

where A t(y) : y i—s- R, and (3t is an increasing function with respect to t, with 
lim^oo (3t = 1 (or (3t = 1 for £ > £'). Function G t(y) captures the geometrical 
information in g, while function -Dt(x) depends on the distribution of the points 
in the current vector Yt. More specifically, Dt(y) will have a greater probability 
mass around empty areas within y, whereas Dt(y) will be approximately zero 
close to the support points and exactly zero at the support points, i.e., Dt(yi) = 
0, for i = 1 , . . . , mt and Vt G N. Since g is unknown, the function Gt(y) can 
be only derived from information acquired in advance or by considering the 
approximation g. The tempering value, [3t, helps to downweight the likely less 
informative estimates in the very first iterations. If (3t = 0, we disregard Gt(y) 
and At(y) = Dt(y), whereas, if (3t = 1, we have At(y) = Gt(y)Dt(y). 

We consider a GP for emulation, so the inputs and outputs are now reversed. 
In addition, note that interpolation fixes an = 0. Therefore, the AGAPE predic­
tive mean and variance at iteration t for a new point y* become simply 

E[?t(y*)] = MAGAPE(y*) = k J K ^ x = k j a , 

v[?t(y*)] = criGAPE(y*) = My*,y*) - k j K ^ 1 ^ , 

where now k* = [^(y*,yi), . . . , fc(yt,ymJ]T contains the similarities between 
the input point x , and the observed ones at iteration t, K is an mt x mt kernel 
matrix with entries K j j := k(yi,yj), and a = K ^ x t is the coefficient vector 
for interpolation. The interpolation for y* can be simply expressed as a linear 
combination of gt(y*) = k j a = YT=i aiHy*, Yi)-

Note that o"AGAPE(y») = 0 for all « = 1 , . . . , m t and o"AGAPE(y) depends 
on the distance among the support points yt, and the chosen kernel function k 
and associated hyper-parameter a. For this reason, the function o"AGAPE(y) is a 

good candidate to represent the distribution of the yt 's since it is zero at each 
yi, and higher far from the points yj's. Moreover, ^ A G A P E ^ ) takes into account 
the information of the GP interpolator. Therefore, we consider as the diversity 
term D(y) := o"AGAPE(y)j i-e-j D(y) is induced by the GP interpolator. 

As geometric information, we consider enforcing flatness on the interpolation 
function, and thus aim to minimize the norm of the the gradient of the inter­
polating function gt w.r.t. the input data y, i.e., G(y) = ||Vj,t/t(y|Y t,x t)|| = 
\\J2"=-iai^yk(y,Yi)\\- This intuitively makes wavy regions of g require more 
support points than fiat regions. The gradient vector for the squared exponen­
tial kernelm k(y,y') = exp(- | |y - y'\\2/(2a2)) with y = [y 1 ; . . . , yd]

J, can be 

computed in closed-form, Vyk(y,y') = -k{y
af

 } [(y1 -y[),..., (yd -y'd)]
J, so the 

geometry term G(y) can be defined, for instance, as follows: 

G(y) = | |Vy? t(y |Y t ,x t) | | = 
-, mt 

-E v ^[^y , ) ] (9) 

which reduces the dependence to the current approximation gt. Therefore, the 
acquisition function can be readily obtained by defining (3t = 1 — exp(—-yi), 



where 7 > 0 is a positive scalar and plugging Eq. (9) into Eq. (8). We optimized 
A(x) using interacting parallel simulated annealing methods [16,17]. 

Random Latin Hypercube A G A P E 

28.43 16.69 9.16 

5.1 Experimental Results 

We show empirical evidence of performance on the optimization of selected points 
for a complex and computationally expensive RTM: the MODTRAN5-based 
LUT. MODTRAN5 is considered as the de facto standard atmospheric RTM for 
atmospheric correction applications [2]. In our test application, and for the sake 
of simplicity, we have considered d = 2 with the Aerosol Optical Thickness at 
550 nm (T) and ground elevation (h) as key input parameters. The underlying 
function g(y) consists therefore on the execution of MODTRAN5 at given values 
of T and h and wavelength of 760 nm. The input parameter space is bounded to 
0.05-0.4 for T and 0-3 km for h. In order to test the accuracy of the different 
schemes, we have evaluated g(y) at all the possible 1750 combinations of 35 
values of T and 50 values of h. Namely, this thin grid represents the ground-
truth in this example. 

We tested (a) a standard, yet subopti- T a b l e 1. Averaged number of nodes 
mal, random approach choosing points uni- m 

formly within y = [0.05,0.4] x [0, 3], (b) the 
Latin Hypercube sampling [5], and (c) the 
proposed AGAPE. We start with mo = 5 
points y i = [0.05,0]T, y2 = [0.05,3]T, y3 = [0.4,0]T, y4 = [0.4,3]T and 
y5 = [0.2,1.5]T for all the techniques. We compute the final number of nodes mt 

required to obtain an £2 distance between g and g smaller than e = 0.03, with 
the different methods. The results, averaged over 103 runs, are shown in Table 1. 
AGAPE requires the addition of « 4 new points to obtain a distance smaller 
than 0.03. 

6 Conclusions 

We introduced three different schemes based on GP modeling in the interplay 
between Physics and Machine Learning, with the focus on the Earth system 
modeling. Canonical machine learning for EO problems rely on in situ observa­
tional data, and often disregard the physical knowledge and models available. 
We argue that the equations encoded in forward physical models may be very 
useful in inverse GP modeling, such that models may give consistent, physically 
meaningful estimates. Three types of physics-aware GP models were introduced: 
a simple approach to combine in situ measurements and simulated data in a 
single GP model, a latent force model that incorporates ordinary differential 
equations, and an automatic compact emulator of physical models through GPs. 
The developed models demonstrated good performance, adaptation to the signal 
characteristics and transportability to unseen situations. 
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