Skip to main content

GreenCrowd: An IoT-Based Smartphone App for Residential Electricity Conservation

  • Conference paper
  • First Online:
Designing the Digital Transformation (DESRIST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10243))

  • 4640 Accesses

Abstract

Energy is a scarce commodity. Diffusion of responsibility, forgetfulness, lack of knowledge and motivation are reasons for families’ electricity waste. GreenCrowd is a smartphone application and IoT system to help families to decrease their electricity consumption. GreenCrowd incorporates educational, motivational and supportive features. The IoT device (smart LED lamp) reports previous consumption with a comparison to each family baseline. The smart LED lamp works as a notification tool that targets all house members. The current study presents preliminary results for electricity reduction during an intervention experiment. Also, it presents result about the effectiveness of the smart LED lamp as a notification tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cauchon, D.: Household electricity bills skyrocket. http://www.usatoday.com/money/industries/energy/story/2011-12-13/electric-bills/51840042/1

  2. Weber, C.L., Matthews, H.S.: Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 66, 379–391 (2008)

    Article  Google Scholar 

  3. Energy Information Administration: International Energy Outlook (2014). http://www.eia.gov/forecasts/ieo/index.cfm

  4. Stokes, L.C., Mildenberger, M., Savan, B., Kolenda, B.: Analyzing barriers to energy conservation in residences and offices: the rewire program at the University of Toronto. Appl. Environ. Educ. Commun. 11, 88–98 (2012)

    Article  Google Scholar 

  5. Frantz, C.M., Mayer, F.S.: The emergency of climate change: why are we failing to take action? Anal. Soc. Issues Publ. Policy 9, 205–222 (2009)

    Article  Google Scholar 

  6. Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of things. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) From Active Data Management to Event-Based Systems and More. LNCS, vol. 6462, pp. 242–259. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17226-7_15

    Chapter  Google Scholar 

  7. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–356 (2013)

    Google Scholar 

  8. Hevner, A., Chatterjee, S.: Design Science Research in Information Systems. Springer, New York (2010)

    Book  Google Scholar 

  9. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)

    Article  Google Scholar 

  10. Brynjarsdottir, H., Håkansson, M., Pierce, J., Baumer, E., DiSalvo, C., Sengers, P.: Sustainably unpersuaded: how persuasion narrows our vision of sustainability. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 947–956. ACM (2012)

    Google Scholar 

  11. Oinas-Kukkonen, H., Harjumaa, M.: A systematic framework for designing and evaluating persuasive systems. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 164–176. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68504-3_15

    Chapter  Google Scholar 

  12. Barreto, M.L., Szóstek, A., Karapanos, E., Nunes, N.J., Pereira, L., Quintal, F.: Understanding families’ motivations for sustainable behaviors. Comput. Hum. Behav. 40, 6–15 (2014)

    Article  Google Scholar 

  13. Oinas-Kukkonen, H., Harjumaa, M.: Persuasive systems design: key issues, process model, and system features. Commun. Assoc. Inf. Syst. 24, 28 (2009)

    Google Scholar 

  14. Copeland, M., Soh, J., Puca, A., Manning, M., Gollob, D.: Microsoft azure and cloud computing. In: Microsoft Azure, pp. 3–26. Apress (2015)

    Google Scholar 

  15. Hamilton, S., Chervany, N.L.: Evaluating information system effectiveness-Part I: Comparing evaluation approaches. MIS Q. 55–69 (1981)

    Google Scholar 

  16. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum. Comput. Interact. 24, 574–594 (2008)

    Article  Google Scholar 

  17. Cho, V., Hung, H.: The effectiveness of short message service for communication with concerns of privacy protection and conflict avoidance. J. Comput. Mediat. Commun. 16, 250–270 (2011)

    Article  Google Scholar 

  18. Siero, F.W., Bakker, A.B., Dekker, G.B., Van Den Burg, M.T.: Changing organizational energy consumption behaviour through comparative feedback. J. Environ. Psychol. 16, 235–246 (1996)

    Article  Google Scholar 

  19. Kurisu, K.: Pro-environmental Behaviors. Springer Japan, Tokyo (2015)

    Book  Google Scholar 

  20. Daniel, S.: Remarkably wet winter so far in California…and more storms to come. http://weatherwest.com/

  21. Brooke, J., et al.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189, 4–7 (1996)

    Google Scholar 

  22. Sauro, J.: A practical guide to the system usability scale: background, benchmarks & best practices. Measuring Usability LLC (2011)

    Google Scholar 

  23. Noyen, K., Wortmann, F.: Travel safety: a social media enabled mobile travel risk application. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 373–377. Springer, Cham (2014). doi:10.1007/978-3-319-06701-8_28

    Chapter  Google Scholar 

  24. Geller, E.S.: The challenge of increasing proenvironment behavior. Handb. Environ. Psychol. 525–540 (2002)

    Google Scholar 

  25. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability problems. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems, pp. 206–213. ACM (1993)

    Google Scholar 

Download references

Acknowledgment

The research team would like to acknowledge with thanks the financial and technical support granted to this research project by UtilityAPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olayan Alharbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alharbi, O., Chatterjee, S. (2017). GreenCrowd: An IoT-Based Smartphone App for Residential Electricity Conservation. In: Maedche, A., vom Brocke, J., Hevner, A. (eds) Designing the Digital Transformation. DESRIST 2017. Lecture Notes in Computer Science(), vol 10243. Springer, Cham. https://doi.org/10.1007/978-3-319-59144-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59144-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59143-8

  • Online ISBN: 978-3-319-59144-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics