Abstract
The work on mutation testing has attracted a lot of attention during the last decades. Mutation testing is a powerful mechanism to improve the quality of test suites based on the injection of syntactic changes into the code of the original program. Several studies have focused on reducing the high computational cost of applying this technique and increasing its efficiency. Only some of them have tried to do it through the application of genetic algorithms. Genetic algorithms can guide through the generation of a reduced subset of mutants without significant loss of information. In this paper, we analyse recent advances in mutation testing that contribute to reduce the cost associated to this technique and propose to apply them for addressing current drawbacks in Evolutionary Mutation Testing (EMT), a genetic algorithm based technique with promising experimental results so far.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamopoulos, K., Harman, M., Hierons, R.M.: How to overcome the equivalent mutant problem and achieve tailored selective mutation using co-evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 1338–1349. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24855-2_155
Banzi, A.S., Nobre, T., Pinheiro, G.B., Árias, J.C.G., Pozo, A., Vergilio, S.R.: Selecting mutation operators with a multiobjective approach. Expert Syst. Appl. 39(15), 12131–12142 (2012). http://dx.doi.org/10.1016/j.eswa.2012.04.041
Delgado-Pérez, P., Medina-Bulo, I., Segura, S., Domínguez-Jiménez, J.J., García-Domínguez, A.: GiGAn: evolutionary mutation testing for C++ object-oriented systems. In: The 32nd ACM Symposium on Applied Computing (SAC 2017) (2017)
Delgado-Pérez, P., Segura, S., Medina-Bulo, I.: Assessment of C++ object-oriented mutation operators: a selective mutation approach. Softw. Test. Verif. Reliab. (2017). http://dx.doi.org/10.1002/stvr.1630
Domínguez-Jiménez, J.J., Estero-Botaro, A., García-Domínguez, A., Medina-Bulo, I.: GAmera: an automatic mutant generation system for WS-BPEL compositions. In: Proceedings of the 7th IEEE European Conference on Web Services, pp. 97–106. IEEE Computer Society Press, Eindhoven, November 2009. http://dx.doi.org/10.1109/ECOWS.2009.18
Domínguez-Jiménez, J.J., Estero-Botaro, A., García-Domínguez, A., Medina-Bulo, I.: Evolutionary mutation testing. Inf. Softw. Technol. 53(10), 1108–1123 (2011). http://dx.doi.org/10.1016/j.infsof.2011.03.008
Estero-Botaro, A., Palomo-Lozano, F., Medina-Bulo, I., Domínguez-Jiménez, J.J., García-Domínguez, A.: Quality metrics for mutation testing with applications to WS-BPEL compositions. Softw. Test. Verif. Reliab. 25(5–7), 536–571 (2015). http://dx.doi.org/10.1002/stvr.1528
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning., 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)
Hierons, R., Harman, M., Danicic, S.: Using program slicing to assist in the detection of equivalent mutants. Softw. Test. Verif. Reliab. 9(4), 233–262 (1999). http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<233::AID-STVR191>3.0.CO;2-3
Jia, Y., Harman, M.: Constructing subtle faults using higher order mutation testing. In: Proceedings of the Eighth IEEE International Working Conference on Source Code Analysis and Manipulation, 2008, pp. 249–258, September 2008. http://dx.doi.org/10.1109/SCAM.2008.36
Offutt, A.J., Pan, J.: Detecting equivalent mutants and the feasible path problem. In: Proceedings of the Eleventh Annual Conference on Computer Assurance, Systems Integrity. Software Safety. Process Security (COMPASS 1996), pp. 224–236, June 1996. http://dx.doi.org/10.1109/CMPASS.1996.507890
de Oliveira, A.A.L., Camilo-Junior, C.G., Vincenzi, A.M.R.: A coevolutionary algorithm to automatic test case selection and mutant in mutation testing. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2013), pp. 829–836, June 2013. http://dx.doi.org/10.1109/CEC.2013.6557654
Omar, E., Ghosh, S., Whitley, D.: HOMAJ: a tool for higher order mutation testing in AspectJ and Java. In: Proceedings of the IEEE Seventh International Conference on Software Testing, Verification and Validation Workshops (ICSTW 2014), pp. 165–170, March 2014. http://dx.doi.org/10.1109/ICSTW.2014.19
Papadakis, M., Delamaro, M., Traon, Y.L.: Mitigating the effects of equivalent mutants with mutant classification strategies. Sci. Comput. Program. 95(Part 3), 298–319 (2014). http://dx.doi.org/10.1016/j.scico.2014.05.012, special Section: ACM SAC-SVT 2013 + Bytecode 2013
Papadakis, M., Jia, Y., Harman, M., Le Traon, Y.: Trivial compiler equivalence: a large scale empirical study of a simple, fast and effective equivalent mutant detection technique. In: Proceedings of the 37th International Conference on Software Engineering - Volume 1 (ICSE 2015), pp. 936–946. IEEE Press, Piscataway (2015). http://dx.doi.org/10.1109/ICSE.2015.103
Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic algorithms. Softw. Test. Verif. Reliab. 9(4), 263–282 (1999). http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<263::AIDSTVR190>3.0.CO;2-Y
Schuler, D., Zeller, A.: Covering and uncovering equivalent mutants. Softw. Test. Verif. Reliab. 23(5), 353–374 (2013). http://dx.doi.org/10.1002/stvr.1473
Schwarz, B., Schuler, D., Zeller, A.: Breeding high-impact mutations. In: Proceedings of the 4th IEEE International Conference on Software Testing, Verification, and Validation Workshops (ICSTW 2011), pp. 382–387 (2011). http://dx.doi.org/10.1109/ICSTW.2011.56
Usaola, M., Mateo, P.: Mutation testing cost reduction techniques: a survey. IEEE Softw. 27(3), 80–86 (2010). http://dx.doi.org/10.1109/MS.2010.79
Woodward, M.R.: Mutation testing - its origin and evolution. Inf. Softw. Technol. 35(3), 163–169 (1993). http://dx.doi.org/10.1016/0950-5849(93)90053-6
Xanthakis, S., Ellis, C., Skourlas, C., Le Gall, A., Katsikas, S., Karapoulios, K.: Application of genetic algorithms to software testing. In: Proceedings of the 5th International Conference on Software Engineering and Applications, pp. 625–636 (1992)
Zhang, L., Gligoric, M., Marinov, D., Khurshid, S.: Operator-based and random mutant selection: better together. In: Proceedings of the IEEE/ACM 28th International Conference on Automated Software Engineering (ASE 2013), pp. 92–102, November 2013. http://dx.doi.org/10.1109/ASE.2013.6693070
Zhang, L., Hou, S.S., Hu, J.J., Xie, T., Mei, H.: Is operator-based mutant selection superior to random mutant selection? In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE 2010), pp. 435–444, ACM, New York (2010). http://dx.doi.org/10.1145/1806799.1806863
Acknowledgements
Paper partially funded by the research scholarship PU-EPIF-FPI-PPI-BC 2012-037 (University of Cádiz) and by Spanish government projects DArDOS (TIN2015-65845-C3-3-R (MINECO/FEDER)), SICOMORo-CM (S2013/ICE-3006) and the Excellence Network SEBASENet (TIN2015-71841-REDT (MINECO)).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Delgado-Pérez, P., Medina-Bulo, I., Merayo, M.G. (2017). Using Evolutionary Computation to Improve Mutation Testing. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-59147-6_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59146-9
Online ISBN: 978-3-319-59147-6
eBook Packages: Computer ScienceComputer Science (R0)