Skip to main content

Fine-to-Coarse Ranking in Ordinal and Imbalanced Domains: An Application to Liver Transplantation

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

  • 3055 Accesses

Abstract

Nowadays imbalanced learning represents one of the most vividly discussed challenges in machine learning. In these scenarios, one or some of the classes in the problem have a significantly lower a priori probability, usually leading to trivial or non-desirable classifiers. Because of this, imbalanced learning has been researched to a great extent by means of different approaches. Recently, the focus has switched from binary classification to other paradigms where imbalanced data also arise, such as ordinal classification. This paper tests the application of learning pairwise ranking with multiple granularity levels in an ordinal and imbalanced classification problem where the aim is to construct an accurate model for donor-recipient allocation in liver transplantation. Our experiments show that approaching the problem as ranking solves the imbalance issue and leads to a competitive performance.

This work has been subsidized by the TIN2014-54583-C2-1-R and the TIN2015-70308-REDT projects of the Spanish Ministerial Commission of Science and Technology (MINECO, Spain), FEDER funds (EU), the PI-0312-2014 project of the “Fundación pública andaluza progreso y salud” (Spain), the PI15/01570 project (“Proyectos de Investigación en Salud”), and also by NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and Analytics/NORTE-01-0145-FEDER-000016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note, however, that a simple regression analysis is not feasible because of the high number of organs which survived the 365 day threshold (for which, we do not have more information).

References

  1. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, pp. 283–287 (2009)

    Google Scholar 

  2. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd international Conference on Machine Learning - ICML 2005, pp. 89–96. ACM, New York (2005)

    Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  5. Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Comput. 19, 792–815 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cruz, R., Fernandes, K., Cardoso, J.S., Costa, J.F.P.: Tackling class imbalance with ranking. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2182–2187, July 2016

    Google Scholar 

  7. Cruz, R., Fernandes, K., Pinto Costa, J.F., Perez Ortiz, M., Cardoso, J.S.: Ordinal class imbalance with ranking. In: Rojas, I., et al. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 538–548. Springer, Cham (2017)

    Google Scholar 

  8. Cruz-Ramírez, M., Hervás-Martínez, C., Sánchez-Monedero, J., Gutiérrez, P.A.: Metrics to guide a multi-objective evolutionary algorithm for ordinal classification. Neurocomputing 135, 21–31 (2014)

    Article  Google Scholar 

  9. Fürnkranz, J., Hüllermeier, E., Vanderlooy, S.: Binary decomposition methods for multipartite ranking. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 359–374. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04180-8_41

    Chapter  Google Scholar 

  10. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4), 463–484 (2012)

    Article  Google Scholar 

  11. Gutiérrez, P.A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernandez-Navarro, F., Hervás-Martínez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    Article  Google Scholar 

  12. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 9(21), 1263–1284 (2009)

    Google Scholar 

  13. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal regression. In: International Conference on Artificial Neural Networks, pp. 97–102 (1999)

    Google Scholar 

  14. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. Advances in Large Margin Classifiers, pp. 115–132. MIT Press, Cambridge (2000)

    Google Scholar 

  15. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  16. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    MATH  Google Scholar 

  17. McCullagh, P.: Regression models for ordinal data. J. Roy. Stat. Soc. 42(2), 109–142 (1980)

    MathSciNet  MATH  Google Scholar 

  18. Pérez-Ortiz, M., Cruz-Ramírez, M., Ayllón-Terán, M., Heaton, N., Ciria, R., Hervás-Martínez, C.: An organ allocation system for liver transplantation based on ordinal regression. Appl. Soft Comput. 14(Part A), 88–98 (2014)

    Article  Google Scholar 

  19. Pérez-Ortiz, M., Gutiérrez, P., Hervás-Martínez, C., Yao, X.: Graph-based approaches for over-sampling in the context of ordinal regression. IEEE Trans. Knowl. Data Eng. 27(5), 1233–1245 (2015)

    Article  Google Scholar 

  20. Pérez-Ortiz, M., Gutiérrez, P.A., Tino, P., Hervás-Martínez, C.: Oversampling the minority class in the feature space. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1947–1961 (2016)

    Article  MathSciNet  Google Scholar 

  21. Rajaram, S., Agarwal, S.: Generalization bounds for k-partite ranking. In: Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems (NIPS2005), pp. 28–23 (2005)

    Google Scholar 

  22. Tang, Y., Zhang, Y.Q., Chawla, N.V., Krasser, S.: SVMs modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. B Cybern. 39(1), 281–288 (2009)

    Article  Google Scholar 

  23. Torgo, L., Ribeiro, R.P., Pfahringer, B., Branco, P.: SMOTE for regression. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS (LNAI), vol. 8154, pp. 378–389. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40669-0_33

    Chapter  Google Scholar 

  24. Zheng, Z., Chen, K., Sun, G., Zha, H.: A regression framework for learning ranking functions using relative relevance judgments. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 287–294. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Pérez-Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pérez-Ortiz, M., Fernandes, K., Cruz, R., Cardoso, J.S., Briceño, J., Hervás-Martínez, C. (2017). Fine-to-Coarse Ranking in Ordinal and Imbalanced Domains: An Application to Liver Transplantation. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics