Abstract
In this paper we present a library of parallel skeletons to deal with swarm intelligence metaheuristics. The library is implemented using the parallel functional language Eden, an extension of the sequential functional language Haskell. Due to the higher-order nature of functional languages, we simplify the task of writing generic code, and also the task of comparing different strategies. The paper illustrates how to develop new skeletons and presents empirical results.
This work has been partially supported by projects TIN2012-39391-C04-04, TIN2015-67522-C3-3-R, and S2013/ICE-2731.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akay, B., Karaboga, D.: Parameter tuning for the artificial bee colony algorithm. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 608–619. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04441-0_53
Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programming. Parallel Comput. 30, 389–406 (2004)
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)
Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, Heidelberg (2010)
Karaboga, D., Görkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Computer Society Press (1995)
Loogen, R.: Eden – parallel functional programming with haskell. In: Zsók, V., Horváth, Z., Plasmeijer, R. (eds.) CEFP 2011. LNCS, vol. 7241, pp. 142–206. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32096-5_4
Parejo, J.A., García, J., Ruiz-Cortés, A., Riquelme, J.C.: Statservice: herramienta de análisis estadístico como soporte para la investigación con metaheurísticas. In: MAEB 2012 (2012)
Pedersen, M.E.H.: Good parameters for differential evolution. Technical report HL1002, Hvass Laboratories (2010)
Pedersen, M.E.H.: Tuning & simplifying heuristical optimization. Ph.D. thesis, University of Southampton, School of Engineering Sciences (2010)
Rabanal, P., Rodríguez, I., Rubio, F.: Using river formation dynamics to design heuristic algorithms. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 163–177. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73554-0_16
Rabanal, P., Rodríguez, I., Rubio, F.: Parallelizing particle swarm optimization in a functional programming environment. Algorithms 7(4), 554–581 (2014)
Rodríguez, I., Rabanal, P., Rubio, F.: How to make a best-seller: optimal product design problems. Appl. Soft Comput. 55, 178–196 (2017)
Rubio, F.: Programación funcional paralela eficiente en Eden. Ph.D. thesis, Universidad Complutense de Madrid (2001)
Rubio, F., de la Encina, A., Rabanal, P., Rodríguez, I.: Eden’s bees: parallelizing artificial bee colony in a functional environment. In: ICCS 2013, pp. 661–670 (2013)
Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rubio, F., de la Encina, A., Rabanal, P., Rodríguez, I. (2017). A Parallel Swarm Library Based on Functional Programming. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-59153-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59152-0
Online ISBN: 978-3-319-59153-7
eBook Packages: Computer ScienceComputer Science (R0)