Skip to main content

A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

  • 2087 Accesses

Abstract

In this paper, we describe a study of a parameter estimation technique to estimate a set of unknown biological parameters of a non-linear dynamic model of dengue. We also explore a Levenberg-Marquardt (LM) algorithm to minimize the cost function. A classical mathematical model describes the dynamics of mosquitoes in water and winged phases, where the data are available. The main interest is to fit the model to the data taking into account the parameters estimated. Numerical simulations were performed and results showed the robustness of LM in estimating the important parameters in the dengue disease problem.

The original version of this chapter was revised: An acknowledgement has been added. The erratum to this chapter is available at 10.1007/978-3-319-59153-7_65

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-59153-7_65

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, prevention and control. WHO, Geneva (2009). http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1

  2. McBridea, W.J.H., Bielefeldt-Ohmannb, H.: Dengue viral infections; pathogenesis and epidemiology. Microbes Infect. 2, 1041–1050 (2000). http://dx.doi.org/10.1016/S1286-4579(00)01258-2

    Article  Google Scholar 

  3. Halstead, S.B.: Dengue. The Lancet 370(9599), 1644–1652 (2007). http://dx.doi.org/10.1016/S0140-6736(07)61687-0

    Article  Google Scholar 

  4. Florentino, H.O., Bannawart, B.F., Cantane, D.R., Santos, F.L.P.: Multiobjective genetic algorithm applied to dengue control. Math. Biosci. 256, 77–84 (2014). http://dx.doi.org/10.1016/j.mbs.2014.08.013

    Article  MathSciNet  MATH  Google Scholar 

  5. Esteva, L., Yang, H.M.: Mathematical model to assess the control of Aedes aegypti mosquitoes by sterile insect technique. Math. Biosci. 198, 132–147 (2005). doi:10.1016/j.mbs.2005.06.004

    Article  MathSciNet  MATH  Google Scholar 

  6. García-Garaluz, E., Atencia, M., Joya, G., García-Lagos, F., Sandoval, F.: Hopfield networks for identification of delay differential equations with an application to dengue fever epidemics in Cuba. Neurocomputing 74, 2691–2697 (2011). http://doi.org/10.1016/j.neucom.2011.03.022

    Article  Google Scholar 

  7. Teixeira, M.G., Costa, M.C.N., Barreto, F., Barreto, M.L.: Dengue: twenty-five years since re-emergence in Brazil. Cad. Saúde Pública 25(1), S7–S18 (2009). http://dx.doi.org/10.1590/S0102-311X2009001300002

    Article  Google Scholar 

  8. Santos, F.L.P.: A general discrete patches approach to investigate the populational dynamics in dengue. Proc. Ser. Braz. Soc. Comput. Appl. Math. SBMAC 3(2), 1–7 (2015). http://dx.doi.org/10.5540/03.2015.003.02.0016

    Google Scholar 

  9. Ayoub, H., Ainseba, B., Langlais, M., Hogan, T., Callard, R., Seddon, B., Thiébaut, R.: Parameter identification for model of T cell proliferation in Lymphopenia conditions. Math. Biosci. 251, 63–71 (2014). http://dx.doi.org/10.1016/j.mbs.2014.03.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for non-linear least square problems. Informatics and Mathematical Modelling Technical University of Denmark (2004)

    Google Scholar 

  11. Gavin, H.P.: The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, pp. 1–15 (2013)

    Google Scholar 

  12. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Cho, C.-K., Kwon, Y.H.: Parameter estimation in nonlinear age-dependent population dynamics. IMA J. Appl. Math. 62(3), 227–244 (1999). https://doi.org/10.1093/imamat/62.3.227

    Article  MathSciNet  MATH  Google Scholar 

  14. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963). http://dx.doi.org/10.1137/0111030

    Article  MathSciNet  MATH  Google Scholar 

  15. Levenberg, K.: A method for the solution of certain non-linear problem in least squares. Q. J. Appl. Math. 2, 164–168 (1944). http://www.jstor.org/stable/43633451

    Article  MathSciNet  MATH  Google Scholar 

  16. Thomé, R.C.A., Yang, H.M., Esteva, L.: Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Math. Biosci. 223(1), 12–23 (2010). http://dx.doi.org/10.1016/j.mbs.2009.08.009

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, H.M., Macoris, M.L.G., Galvani, K.C., Andrighetti, M.T.M., Wanderley, D.M.V.: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 137, 1188–1202 (2009). https://doi.org/10.1017/S0950268809002040

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian agencies CAPES for the master’s scholarship provided and FAPESP for the financial support received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Luiz Pio dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

dos Santos Benedito, A., Pio dos Santos, F.L. (2017). A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics