Abstract
In this paper, we describe a study of a parameter estimation technique to estimate a set of unknown biological parameters of a non-linear dynamic model of dengue. We also explore a Levenberg-Marquardt (LM) algorithm to minimize the cost function. A classical mathematical model describes the dynamics of mosquitoes in water and winged phases, where the data are available. The main interest is to fit the model to the data taking into account the parameters estimated. Numerical simulations were performed and results showed the robustness of LM in estimating the important parameters in the dengue disease problem.
The original version of this chapter was revised: An acknowledgement has been added. The erratum to this chapter is available at 10.1007/978-3-319-59153-7_65
An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-59153-7_65
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, prevention and control. WHO, Geneva (2009). http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1
McBridea, W.J.H., Bielefeldt-Ohmannb, H.: Dengue viral infections; pathogenesis and epidemiology. Microbes Infect. 2, 1041–1050 (2000). http://dx.doi.org/10.1016/S1286-4579(00)01258-2
Halstead, S.B.: Dengue. The Lancet 370(9599), 1644–1652 (2007). http://dx.doi.org/10.1016/S0140-6736(07)61687-0
Florentino, H.O., Bannawart, B.F., Cantane, D.R., Santos, F.L.P.: Multiobjective genetic algorithm applied to dengue control. Math. Biosci. 256, 77–84 (2014). http://dx.doi.org/10.1016/j.mbs.2014.08.013
Esteva, L., Yang, H.M.: Mathematical model to assess the control of Aedes aegypti mosquitoes by sterile insect technique. Math. Biosci. 198, 132–147 (2005). doi:10.1016/j.mbs.2005.06.004
García-Garaluz, E., Atencia, M., Joya, G., García-Lagos, F., Sandoval, F.: Hopfield networks for identification of delay differential equations with an application to dengue fever epidemics in Cuba. Neurocomputing 74, 2691–2697 (2011). http://doi.org/10.1016/j.neucom.2011.03.022
Teixeira, M.G., Costa, M.C.N., Barreto, F., Barreto, M.L.: Dengue: twenty-five years since re-emergence in Brazil. Cad. Saúde Pública 25(1), S7–S18 (2009). http://dx.doi.org/10.1590/S0102-311X2009001300002
Santos, F.L.P.: A general discrete patches approach to investigate the populational dynamics in dengue. Proc. Ser. Braz. Soc. Comput. Appl. Math. SBMAC 3(2), 1–7 (2015). http://dx.doi.org/10.5540/03.2015.003.02.0016
Ayoub, H., Ainseba, B., Langlais, M., Hogan, T., Callard, R., Seddon, B., Thiébaut, R.: Parameter identification for model of T cell proliferation in Lymphopenia conditions. Math. Biosci. 251, 63–71 (2014). http://dx.doi.org/10.1016/j.mbs.2014.03.002
Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for non-linear least square problems. Informatics and Mathematical Modelling Technical University of Denmark (2004)
Gavin, H.P.: The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, pp. 1–15 (2013)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)
Cho, C.-K., Kwon, Y.H.: Parameter estimation in nonlinear age-dependent population dynamics. IMA J. Appl. Math. 62(3), 227–244 (1999). https://doi.org/10.1093/imamat/62.3.227
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963). http://dx.doi.org/10.1137/0111030
Levenberg, K.: A method for the solution of certain non-linear problem in least squares. Q. J. Appl. Math. 2, 164–168 (1944). http://www.jstor.org/stable/43633451
Thomé, R.C.A., Yang, H.M., Esteva, L.: Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Math. Biosci. 223(1), 12–23 (2010). http://dx.doi.org/10.1016/j.mbs.2009.08.009
Yang, H.M., Macoris, M.L.G., Galvani, K.C., Andrighetti, M.T.M., Wanderley, D.M.V.: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 137, 1188–1202 (2009). https://doi.org/10.1017/S0950268809002040
Acknowledgements
The authors would like to thank the Brazilian agencies CAPES for the master’s scholarship provided and FAPESP for the financial support received.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
dos Santos Benedito, A., Pio dos Santos, F.L. (2017). A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-59153-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59152-0
Online ISBN: 978-3-319-59153-7
eBook Packages: Computer ScienceComputer Science (R0)