Skip to main content

Breast Cancer Microarray and RNASeq Data Integration Applied to Classification

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

  • 2051 Accesses

Abstract

Although Next-Generation Sequencing (NGS) has more impact nowadays than microarray sequencing, there is a huge volume of microarray data that has not still been processed. The last represents the most important source of biological information nowadays due largely to its use over many years, and a very important potential source of genetic knowledge deserving appropriate analysis. Thanks to the two techniques, there is now a huge amount of data that allows us to obtain robust results from its integration. This paper deals with the integration of RNASeq data with microarrays data in order to find breast cancer biomarkers as expressed genes. These integrated data has been used to create a classifier for an early diagnosis of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anders, S., Pyl, P.T., Huber, W.: HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169 (2014). btu638

    Article  Google Scholar 

  2. Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., Edgar, R.: NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res. 35(suppl 1), D760–D765 (2007)

    Article  Google Scholar 

  3. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. In: Computer System Bioinformatics, CSB 2003, Proceedings of 2003 IEEE Bioinformatics (2003)

    Google Scholar 

  4. Gohlmann, H., Talloen, W.: Gene Expression Studies Using Affymetrix Microarrays. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  5. Heider, A., Alt, R.: virtualArray: a R/bioconductor package to merge raw data from different microarray platforms. BMC Bioinform. 14(1), 75 (2013)

    Article  Google Scholar 

  6. Illumina: Illumina genes expression arrays (2009). http://www.illumina.com/techniques/microarrays/gene-expression-arrays.html

  7. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L.: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), R36 (2013)

    Article  Google Scholar 

  8. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359 (2012)

    Article  Google Scholar 

  9. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., et al.: The sequence alignment/map format and samtools. Bioinformatics 25(16), 2078–2079 (2009)

    Article  Google Scholar 

  10. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006)

    Article  Google Scholar 

  11. Nookaew, I., Papini, M., Pornputtpong, N., Scalcinati, G., Fagerberg, L., Uhlén, M., Nielsen, J.: A comprehensive comparison of RNA-seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in saccharomyces cerevisiae. Nucleic Acids Res. 40(20), 10084–10097 (2012). gks804

    Article  Google Scholar 

  12. OMS: Women’s Health (2013). http://www.who.int/mediacentre/factsheets/fs334/en/

  13. Peirson, S.N., Butler, J.N.: Quantitative polymerase chain reaction. In: Rosato, E. (ed.) Circadian Rhythms: Methods and Protocols, pp. 349–362. Springer, Heidelberg (2007)

    Google Scholar 

  14. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015). gkv007

    Article  Google Scholar 

  15. Shao, J.: Linear model selection by cross-validation. J. Am. Stat. Assoc. 88(422), 486–494 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tarazona, S., García, F., Ferrer, A., Dopazo, J., Conesa, A.: NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet. J. 17(B), 18 (2012)

    Article  Google Scholar 

  17. Wang, Z., Gerstein, M., Snyder, M.: RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Project TIN2015-71873-R (Spanish Ministry of Economy and Competitiveness -MINECO- and the European Regional Development Fund -ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Castillo, D., Galvez, J.M., Herrera, L.J., Rojas, I. (2017). Breast Cancer Microarray and RNASeq Data Integration Applied to Classification. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics