Abstract
Trying to find clusters in high dimensional data is one of the most challenging issues in machine learning. Within this context, subspace clustering methods have showed interesting results especially when applied in computer vision tasks. The key idea of these methods is to uncover groups of data that are embedding in multiple underlying subspaces. In this spirit, numerous subspace clustering algorithms have been proposed. One of them is Sparse Subspace Clustering (SSC) which has presented notable clustering accuracy. In this paper, the problem of similarity measure used in the affinity matrix construction in the SSC method is discussed. Assessment on motion segmentation and face clustering highlights the increase of the clustering accuracy brought by the enhanced SSC compared to other state-of-the-art subspace clustering methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering: Algorithms and Applications. Chapman and Hall/CRC, Boca Raton (2013)
Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data (TKDD) 3(1), 1 (2009)
Vidal, R., Tron, R., Hartley, R.: Multiframe motion segmentation with missing data using PowerFactorization and GPCA. Int. J. Comput. Vis. 79(1), 85–105 (2008)
Rao, A., Noushath, S.: Subspace methods for face recognition. Comput. Sci. Rev. 4(1), 1–17 (2010)
Vidal, R.: Subspace clustering. IEEE Sig. Process. Mag. 28(2), 52–68 (2011)
Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 94–106. Springer, Heidelberg (2006). doi:10.1007/11744085_8
Zhang, T., Szlam, A., Wang, Y., Lerman, G.: Hybrid linear modeling via local best-fit flats. Int. J. Comput. Vis. 100(3), 217–240 (2012)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: NIPS, vol. 14, no. 2, pp. 849–856 (2001)
Elhamifar, E., Vidal, R.: Clustering disjoint subspaces via sparse representation. In: IEEE International Conference on Acoustics Speech and Signal Processing ICASSP 2010, pp. 1926–1929 (2010)
Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)
Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning ICML 2010, pp. 663–670 (2010)
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)
Donoho, D.L.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)
Tron, R., Vidal, R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR 2007, pp. 1–8 (2007)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)
Chen, G., Lerman, G.: Motion segmentation by SCC on the Hopkins 155 database. In: the 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 759–764 (2009)
Yin, M., Fang, X., Xie, S.: Semi-supervised sparse subspace clustering on symmetric positive definite manifolds. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds.) CCPR 2016. CCIS, vol. 662, pp. 601–611. Springer, Singapore (2016). doi:10.1007/978-981-10-3002-4_49
Alok, A.K., Saha, S., Ekbal, A.: Development of an external cluster validity index using probabilistic approach and min-max distance. IJCISIM 6(1), 494–504 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hechmi, S., Gallas, A., Zagrouba, E. (2017). Enhanced Similarity Measure for Sparse Subspace Clustering Method. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-59153-7_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59152-0
Online ISBN: 978-3-319-59153-7
eBook Packages: Computer ScienceComputer Science (R0)