Skip to main content

Exploring a Mathematical Model of Gain Control via Lateral Inhibition in the Antennal Lobe

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

  • 2031 Accesses

Abstract

Bioinspired Neural Networks have in many instances paved the way for significant discoveries in Statistical and Machine Learning. Among the many mechanisms employed by biological systems to implement learning, gain control is a ubiquitous and essential component that guarantees standard representation of patterns for improved performance in pattern recognition tasks. Gain control is particularly important for the identification of different odor molecules, regardless of their concentration. In this paper, we explore the functional impact of a biologically plausible model of the gain control on classification performance by representing the olfactory system of insects with a Single Hidden Layer Network (SHLN). Common to all insects, the primary olfactory pathway starts at the Antennal Lobes (ALs) and, then, odor identity is computed at the output of the Mushroom Bodies (MBs). We show that gain-control based on lateral inhibition in the Antennal Lobe robustly solves the classification of highly-concentrated odors. Furthermore, the proposed mechanism does not depend on learning at the AL level, in agreement with biological literature. Due to its simplicity, this bioinspired mechanism may not only be present in other neural systems but can also be further explored for applications, for instance, involving electronic noses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brito, J.J., Mosqueiro, T., Ciferri, R.R., de Aguiar Ciferri, C.D.: Faster cloud star joins with reduced disk spill and network communication. Procedia Comput. Sci. 80, 74–85 (2016)

    Article  Google Scholar 

  2. Cleland, T.A., Chen, S.-Y.T., Hozer, K.W., Ukatu, H.N., Wong, K.J., Zheng, F.: Sequential mechanisms underlying concentration invariance in biological olfaction. Front. Neuroeng. 4, 21 (2011)

    Google Scholar 

  3. Diamond, A., Nowotny, T., Schmuker, M.: Comparing neuromorphic solutions in action: implementing a bio-inspired solution to a benchmark classification task on three parallel-computing platforms. Front. Neurosci. 9, 491 (2015)

    Google Scholar 

  4. Fonollosa, J., Sheik, S., Huerta, R., Marco, S.: Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sens. Actuators B: Chem. 215, 618–629 (2015)

    Article  Google Scholar 

  5. Garcia-Sanchez, M., Huerta, R.: Design parameters of the fan-out phase of sensory systems. J. Comput. Neurosci. 15, 5–17 (2003)

    Article  Google Scholar 

  6. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  7. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning classification in the olfactory system of insects. Neural Comput. 16, 1601–1640 (2004)

    Article  MATH  Google Scholar 

  9. Huerta, R., Mosqueiro, T., Fonollosa, J., Rulkov, N.F., Rodriguez-Lujan, I.: Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring. Chemometr. Intell. Lab. Syst. 157, 169–176 (2016)

    Article  Google Scholar 

  10. Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: explorations in the insect brain. Neural Comput. 21, 2123–2151 (2009)

    Article  MATH  Google Scholar 

  11. Huerta, R., Vembu, S., Amigó, J.M., Nowotny, T., Elkan, C.: Inhibition in multiclass classification. Neural Comput. 24(9), 2473–2507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L.L., Rössler, W., Simpson, J.H., Strausfeld, N.J., Strauss, R., Vosshall, L.B.: A systematic nomenclature for the insect brain. Neuron 81(4), 755–765 (2014)

    Article  Google Scholar 

  13. Dhinesh Babu, L.D., Venkata Krishna, P.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Comput. 13(5), 2292–2303 (2013)

    Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  15. Leitch, B., Laurent, G.: GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J. Comp. Neurol. 372, 487–514 (1996)

    Article  Google Scholar 

  16. Montero, A., Huerta, R., Rodríguez, F.B.: Neuron threshold variability in an olfactory model improves odorant discrimination. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS, vol. 7930, pp. 16–25. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38637-4_3

    Chapter  Google Scholar 

  17. Montero, A., Huerta, R., Rodriguez, F.B.: Regulation of specialists and generalists by neural variability improves pattern recognition performance. Neurocomputing 151, 69–77 (2015)

    Article  Google Scholar 

  18. Montero, A., Huerta, R., Rodriguez, F.B.: Specialist neurons in feature extraction are responsible for pattern recognition process in insect olfaction. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 58–67. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_7

    Chapter  Google Scholar 

  19. Mosqueiro, T., de Lecea, L., Huerta, R.: Control of sleep-to-wake transitions via fast amino acid and slow neuropeptide transmission. New J. Phys. 16(11), 115010 (2014)

    Article  Google Scholar 

  20. Mosqueiro, T., Strube-Bloss, M., Tuma, R., Pinto, R., Smith, B.H., Huerta, R.: Non-parametric change point detection for spike trains. In: 2016 Annual Conference on Information Science and Systems (CISS), pp. 545–550. IEEE, March 2016

    Google Scholar 

  21. Mosqueiro, T.S., Maia, L.P.: Optimal channel efficiency in a sensory network. Phys. Rev. E 88(1), 12712 (2013)

    Article  Google Scholar 

  22. Nowotny, T., Huerta, R., Abarbanel, H.D.I., Rabinovich, M.I.: Self-organization in the olfactory system: rapid odor recognition in insects. Biol. Cyber. 93, 436–446 (2005)

    Article  MATH  Google Scholar 

  23. Nowotny, T., Huerta, R.: On the equivalence of Hebbian learning and the SVM formalism. In: 2012 46th Annual Conference on Information Sciences and Systems (CISS), pp. 1–4. IEEE, March 2012

    Google Scholar 

  24. Olsen, S.R., Wilson, R.I.: Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452(7190), 956–960 (2008)

    Article  Google Scholar 

  25. O’Reilly, R.C.: Generalization in interactive networks: the benefits of inhibitory competition and Hebbian learning. Neural Comput. 13(6), 1199–1241 (2001)

    Article  MATH  Google Scholar 

  26. Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)

    Article  Google Scholar 

  27. Rabinovich, M.I., Huerta, R., Volkovskii, A., Abarbanel, H.D., Stopfer, M., Laurent, G.: Dynamical coding of sensory information with competitive networks. J. Physiol. Paris 94(5–6), 465–471 (2000)

    Article  Google Scholar 

  28. Rodriguez-Lujan, I., Hasty, J., Huerta, R.: FBB: a fast Bayesian-bound tool to calibrate RNA-seq aligners. Bioinformatics 33(2), 210–218 (2017)

    Article  Google Scholar 

  29. Rubin, J.E., Katz, L.C.: Optical imaging of odorant representations in the mammalian olfactory bulb. J. Neurophysiol. 23, 449–511 (1999)

    Google Scholar 

  30. Sachse, S., Galizia, C.G.: The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur. J. Neurosci. 18(8), 2119–2132 (2003)

    Article  Google Scholar 

  31. Salinas, E., Thier, P.: Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000)

    Article  Google Scholar 

  32. Schürmann, F.W., Frambach, I., Elekes, K.: Gabaergic synaptic connections in mushroom bodies of insect brains. Acta Biol. Hung. 59, 173–181 (2008)

    Article  Google Scholar 

  33. Serrano, E., Nowotny, T., Levi, R., Smith, B.H., Huerta, R.: Gain control network conditions in early sensory coding. PLoS Comput. Biol. 9(7), e1003133 (2013)

    Article  MathSciNet  Google Scholar 

  34. Stopfer, M., Jayaraman, V., Laurent, G.: Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003)

    Article  Google Scholar 

  35. Stopfer, M.: Central processing in the mushroom bodies. Curr. Opin. Insect Sci. 6, 99–103 (2014). Pests and resistance/Parasites/Parasitoids/Biological control/Neurosciences

    Article  Google Scholar 

  36. Strube-Bloss, M.F., Herrera-Valdez, M.A., Smith, B.H.: Ensemble response in mushroom body output neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe. PLoS ONE 7(11), e50322 (2012)

    Article  Google Scholar 

  37. Strube-Bloss, M.F., Nawrot, M.P., Menzel, R.: Mushroom body output neurons encode odor-reward associations. J. Neurosci. Official J. Soc. Neurosci. 31(8), 3129–3140 (2011)

    Article  Google Scholar 

  38. Trincavelli, M., Vergara, A., Rulkov, N., Murguia, J.S., Lilienthal, A., Huerta, R.: Optimizing the operating temperature for an array of mox sensors on an open sampling system. AIP Conf. Proc. 1362, 225 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Government projects TIN2010-19607 and TIN2014-54580-R, the predoctoral research grant BES-2011-049274, NIH grant R01GM113967 and CNPq grant 234817/2014-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aaron Montero or Francisco B. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Montero, A., Mosqueiro, T., Huerta, R., Rodriguez, F.B. (2017). Exploring a Mathematical Model of Gain Control via Lateral Inhibition in the Antennal Lobe. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics