Abstract
Bioinspired Neural Networks have in many instances paved the way for significant discoveries in Statistical and Machine Learning. Among the many mechanisms employed by biological systems to implement learning, gain control is a ubiquitous and essential component that guarantees standard representation of patterns for improved performance in pattern recognition tasks. Gain control is particularly important for the identification of different odor molecules, regardless of their concentration. In this paper, we explore the functional impact of a biologically plausible model of the gain control on classification performance by representing the olfactory system of insects with a Single Hidden Layer Network (SHLN). Common to all insects, the primary olfactory pathway starts at the Antennal Lobes (ALs) and, then, odor identity is computed at the output of the Mushroom Bodies (MBs). We show that gain-control based on lateral inhibition in the Antennal Lobe robustly solves the classification of highly-concentrated odors. Furthermore, the proposed mechanism does not depend on learning at the AL level, in agreement with biological literature. Due to its simplicity, this bioinspired mechanism may not only be present in other neural systems but can also be further explored for applications, for instance, involving electronic noses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brito, J.J., Mosqueiro, T., Ciferri, R.R., de Aguiar Ciferri, C.D.: Faster cloud star joins with reduced disk spill and network communication. Procedia Comput. Sci. 80, 74–85 (2016)
Cleland, T.A., Chen, S.-Y.T., Hozer, K.W., Ukatu, H.N., Wong, K.J., Zheng, F.: Sequential mechanisms underlying concentration invariance in biological olfaction. Front. Neuroeng. 4, 21 (2011)
Diamond, A., Nowotny, T., Schmuker, M.: Comparing neuromorphic solutions in action: implementing a bio-inspired solution to a benchmark classification task on three parallel-computing platforms. Front. Neurosci. 9, 491 (2015)
Fonollosa, J., Sheik, S., Huerta, R., Marco, S.: Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sens. Actuators B: Chem. 215, 618–629 (2015)
Garcia-Sanchez, M., Huerta, R.: Design parameters of the fan-out phase of sensory systems. J. Comput. Neurosci. 15, 5–17 (2003)
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)
Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning classification in the olfactory system of insects. Neural Comput. 16, 1601–1640 (2004)
Huerta, R., Mosqueiro, T., Fonollosa, J., Rulkov, N.F., Rodriguez-Lujan, I.: Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring. Chemometr. Intell. Lab. Syst. 157, 169–176 (2016)
Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: explorations in the insect brain. Neural Comput. 21, 2123–2151 (2009)
Huerta, R., Vembu, S., Amigó, J.M., Nowotny, T., Elkan, C.: Inhibition in multiclass classification. Neural Comput. 24(9), 2473–2507 (2012)
Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L.L., Rössler, W., Simpson, J.H., Strausfeld, N.J., Strauss, R., Vosshall, L.B.: A systematic nomenclature for the insect brain. Neuron 81(4), 755–765 (2014)
Dhinesh Babu, L.D., Venkata Krishna, P.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Comput. 13(5), 2292–2303 (2013)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Leitch, B., Laurent, G.: GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J. Comp. Neurol. 372, 487–514 (1996)
Montero, A., Huerta, R., Rodríguez, F.B.: Neuron threshold variability in an olfactory model improves odorant discrimination. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS, vol. 7930, pp. 16–25. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38637-4_3
Montero, A., Huerta, R., Rodriguez, F.B.: Regulation of specialists and generalists by neural variability improves pattern recognition performance. Neurocomputing 151, 69–77 (2015)
Montero, A., Huerta, R., Rodriguez, F.B.: Specialist neurons in feature extraction are responsible for pattern recognition process in insect olfaction. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 58–67. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_7
Mosqueiro, T., de Lecea, L., Huerta, R.: Control of sleep-to-wake transitions via fast amino acid and slow neuropeptide transmission. New J. Phys. 16(11), 115010 (2014)
Mosqueiro, T., Strube-Bloss, M., Tuma, R., Pinto, R., Smith, B.H., Huerta, R.: Non-parametric change point detection for spike trains. In: 2016 Annual Conference on Information Science and Systems (CISS), pp. 545–550. IEEE, March 2016
Mosqueiro, T.S., Maia, L.P.: Optimal channel efficiency in a sensory network. Phys. Rev. E 88(1), 12712 (2013)
Nowotny, T., Huerta, R., Abarbanel, H.D.I., Rabinovich, M.I.: Self-organization in the olfactory system: rapid odor recognition in insects. Biol. Cyber. 93, 436–446 (2005)
Nowotny, T., Huerta, R.: On the equivalence of Hebbian learning and the SVM formalism. In: 2012 46th Annual Conference on Information Sciences and Systems (CISS), pp. 1–4. IEEE, March 2012
Olsen, S.R., Wilson, R.I.: Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452(7190), 956–960 (2008)
O’Reilly, R.C.: Generalization in interactive networks: the benefits of inhibitory competition and Hebbian learning. Neural Comput. 13(6), 1199–1241 (2001)
Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)
Rabinovich, M.I., Huerta, R., Volkovskii, A., Abarbanel, H.D., Stopfer, M., Laurent, G.: Dynamical coding of sensory information with competitive networks. J. Physiol. Paris 94(5–6), 465–471 (2000)
Rodriguez-Lujan, I., Hasty, J., Huerta, R.: FBB: a fast Bayesian-bound tool to calibrate RNA-seq aligners. Bioinformatics 33(2), 210–218 (2017)
Rubin, J.E., Katz, L.C.: Optical imaging of odorant representations in the mammalian olfactory bulb. J. Neurophysiol. 23, 449–511 (1999)
Sachse, S., Galizia, C.G.: The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur. J. Neurosci. 18(8), 2119–2132 (2003)
Salinas, E., Thier, P.: Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000)
Schürmann, F.W., Frambach, I., Elekes, K.: Gabaergic synaptic connections in mushroom bodies of insect brains. Acta Biol. Hung. 59, 173–181 (2008)
Serrano, E., Nowotny, T., Levi, R., Smith, B.H., Huerta, R.: Gain control network conditions in early sensory coding. PLoS Comput. Biol. 9(7), e1003133 (2013)
Stopfer, M., Jayaraman, V., Laurent, G.: Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003)
Stopfer, M.: Central processing in the mushroom bodies. Curr. Opin. Insect Sci. 6, 99–103 (2014). Pests and resistance/Parasites/Parasitoids/Biological control/Neurosciences
Strube-Bloss, M.F., Herrera-Valdez, M.A., Smith, B.H.: Ensemble response in mushroom body output neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe. PLoS ONE 7(11), e50322 (2012)
Strube-Bloss, M.F., Nawrot, M.P., Menzel, R.: Mushroom body output neurons encode odor-reward associations. J. Neurosci. Official J. Soc. Neurosci. 31(8), 3129–3140 (2011)
Trincavelli, M., Vergara, A., Rulkov, N., Murguia, J.S., Lilienthal, A., Huerta, R.: Optimizing the operating temperature for an array of mox sensors on an open sampling system. AIP Conf. Proc. 1362, 225 (2011)
Acknowledgments
This research was supported by the Spanish Government projects TIN2010-19607 and TIN2014-54580-R, the predoctoral research grant BES-2011-049274, NIH grant R01GM113967 and CNPq grant 234817/2014-3.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Montero, A., Mosqueiro, T., Huerta, R., Rodriguez, F.B. (2017). Exploring a Mathematical Model of Gain Control via Lateral Inhibition in the Antennal Lobe. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-59153-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59152-0
Online ISBN: 978-3-319-59153-7
eBook Packages: Computer ScienceComputer Science (R0)